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l Preface

The object of many economic analyses is to find a cause-and-effect relation-
ship between a group of independent variables that describe a situation and a
dependent variable that is to be predicted for various situations. The tools of
these economic analyses, in particular those required to make statistical infer-
ences from data, are the subject of econometrics.

When the dependent variable is categorical, traditional continuous variable -
econometric techniques, such as multiple regression, cannot be used. Unfortu-
nately, existing statistical classification techniques, which can handle dependent
categorical variables, are not particularly helpful either, because these techniques
were not developed with econometric prediction problems in mind. It wouid thus
seem desirabie to have counterparts of multiple regression able to handle depen-
dent categorical variables while avoiding some of the shortcomings of classifica-
tion methods.

Discrete choice models are these counterparts; they have been recently studied

and even applied to some forecasting problems, the latter mainly in the transpor-
tation field.

About the Book

This book is devoted to what is, perhaps, the most general discrete choice
model—the multinominal probit (MNP) model—covering both its theoretical
and practical aspects, and relating these to other discrete choice models. The
main purpose of the book is to compile in a single publication the state of the art
in this branch of econometrics, which in the past few years has seen an explosion
of developments. The material in the book should not, however, be regarded as

ix



X Preface

final, since research in this area is still proceeding at a healthy pace (e.g., during
the year this book was in production, J. Horowitz has reported further work on
confidence intervals, M. Soheily and the author have provided evidence on the
concavity properties of trinomial probit models, and several encouraging results
on optimal sampling strategics have been derived by S. Cosslett, C. Manski,
D.McFadden, and the author}.

Since many of these developments still remain unpublished, their dissemina-
tion to people not actively involved in research has been slow. In order to over-
come this, the book is self-contained and the subject matter is presented at a level
requiring only a reasonably good background in basic calculus, probability, and
linear algebra. The required specialized results in these disciplines have been
summarized in the appendices; these include properties of symmetric matrices
and quadratic forms, of the multivariate normal distribution, and of convex and
concave functions. To improve readability further, the book contains several
numerical examples that illustrate especially difficult and/or important passages.
In addition, a serious attempt was made to eliminate repetitious or not largely
relevant references from the bibliography, while at the same time providing as
large a fraction of published or readily accessible material as possible. Although
as a consequence of this policy the bibliography may not be exhaustive, the
contents of the book (which were often based on well-known ‘‘grapevine’’ con-
cepts and on “*fresh”’ research results obtained by the author while work on the
book proceeded) have been made as comprehensive as possible.

Although designed primarily as a reference book-research monograph, the
book may be used for teaching in the following two ways: as a basic source of
readings for an advanced seminar in econometrics emphasizing the theoretical
aspects of MNP, or as background for an applications course on demand fore-
casting.

The following subjects could be included in the theoretical seminar: MNP
choice probability calculation methods, analysis of estimability and unimodality
problems in the calibration of MNP models, shortcut prediction and equilibrium
methods, and statistical aspects of predicting with MNP models. Of course, the
material in the book could be complemented with selected readings from the
reference list. In this mode of operation, the book was successfully class tested
by the author in the fall of 1978 at the University of California, Berkeley,
with a course entitied Advanced Topics in Transportation Theory. The students
were Ph.D. candidates from the departments of civil engineering, economics,
industrial engineering and operations research, and mathematics.

If on the other hand the book is used as background for a course on demand
forecasting, less emphasis should be put on reading and more on ‘‘hands-on”
learning with one of the available MNP calibration—prediction computer pro-
grams. Ideally, such a course would include a laboratory section in which the
students would perform the essential tasks of a real-life prediction, starting by

Preface Xi

specifying a MNP model, designing an appropriate questionnaire, gathering
some data, calibrating the MNP model, and finally carrying out the prediction.
A three-week intensive course along these lines was devised and taught fairly
successfully by the author at the Universidad del los Andes (Mérida, Venezuela)
in the summer of 1978. The course was taken by about thirty postgraduate trans-
portation engineering students from several South and Central American coun-
tries. The size of the class made it possible to gather a realistic data set with very
little effort, which illustrated very well how discrete choice models can be used
in developing countries, where data are often lacking.
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Chapter 1 An Introduction to Disaggregate
Demand Modeling in the
Transportation Field

Many different approaches have been used in the transportation field
to forecast the usage of a transportation facility or service. In the early days,
the techniques were very rudimentary since they were developed by prac-
titioners with a very specitic application or problem in mind. An example
of such a stage is provided by the simple curve-fitting attempts to model
route diversion [see Beilner and Jacobs (1972), for a review]. This stage was
lollowed by another in which transportation engincers and planners bor-
rowed techniques [rom econometrics and applied them methodically to a
variety of problems. Trip-generation regression studies [McCarthy (1969);
U.S. Dept. of Transportation (1975)] and application of discriminant analysis
to modal split [ Beesley (1965); Quarmby (1967)] are examples of the activity
of this second stage. As researchers looked for more efficient and reliable
ways of predicting how transportation facilities and services are used, it
became clear to them that some of the “of-the-shelf” techniques could be
improved and new econometric techniques began to emerge. The multi-
nomial logit (MNL) model is, perhaps, the most noticeable such technique.
It has been popularized by econometricians and researchers with interest
in transportation problems [see, for example, Theil (1969); Rassam et al.
(1971); McFadden, (1973, 1974)] and has been used in many transportation
studies. This book continues Lhe trend and presents a technique, multinomial
probit (MNP), which, although developed by transportation-oriented eco-
nometricians, engineers, and applied mathematicians, may eventually out-
grow the application area in which it originated.



2 1 An Introduction to Disaggregate Demand Modeling

1.1 Demand Forecasting

The objective of transportation demand forecasting' s to relate, by
means of a mathematical function (called a demand funetion), the amount
of traffic on a transportation facility (henceforth called the usage) to the
characteristics of a population of potential users and the transportation
system so that when any of these characteristics is changed, one can predict
the change in usage.? The characteristics of the population (age, income,
population size, etc.) and the transportation system (travel time, cost, etc.)
will be called attributes of the system or, simply, attributes in this book.
The attributes of the transportation system will sometimes be referred to
as level-of-service attributes and the characteristics of the population as
sociveconomic attributes. It should be noted that these attributes will, in
general, vary from individual to individual, and, therefore, their relative
frequencies of appearance for individuals sampled at random from the
population may be described by probability density functions. To derive a
demand function, one specifies, on a priori grounds, a family of functions
that relate usage to the distribution of the attributes across the population
depending on the value of some unknown parameters. This process is called
specification and is perhaps the most crucial step in carrying out a forecast.

If we have » unknown parameters 0,,...,8,, and we denote by
Fla,,a,,...,a,) the joint probability density function of the s atiributes
Ay, ..., A, that appear in the specification of the problem, the demand
function could be written as a set function®:

y=D(61592""10r9§;)1 (11)
where y is the predicted usage of the facility and & is a set containing the
values of I(a) for cach and every value of the attribute vector,a = (a,, . . . ,a,).

In many instances, one specifies that only certain aspects of F(a) (such
as the mean values of the attributes) influence the value of y. For instance,
to study the number of persons who travel yearly by highway between towns
1 and 2, one can use a “gravity model” with an exponential decay function
of travel time:

y = 0yay3, exp(— 0ya3), T2

! The terms “forecasting” and “prediction” will be used interchangeably throughout this
beok.

2 Nofe that this definition is a generalization of the cconomic concept of a demand func-
lion that relates usage to price. In our case usage may be related to price, but also 1o other
characteristics.

* In most cases Lhroughout this book, and as is customary in the probability literature,
random variables are denoted by capital leftters and the values they take by lower-case letters.
We sometimes depart from (his rule, as with variables that are customarily represented as capital
letters, but the distinction can always be made from the context.
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where «, and a, are the population sizes of towns 1 and 2, respectively, a,
is the average driving time between the towns, and 0, and 0, are some
unknown parameters. Note that although attributes A, and A, are fixed,
the driving time A; could vary across individuals depending on the specific
locations of the origin and destination points within the towns. Because of
this, a5 was defined to represent the average driving time. That is, the demand
function has been specified in terms of the averages of the relevant attributes
across the population. In general, a model that is specified only in terms of
statistical summaries (means, variances, etc.) of the attributes will be called
an aggregate demand model, i.e., a demand model that is specified in terms
of some aggregate characteristics of the system. Disaggregate demand models,
or models that do not use attribute averages, are surveyed in the next section.

Once a model has been specified, the parameters 0,, . . ., 0, are deter-
mined [rom data by means of a cafibration process. This is done by selecting
the parameter values that best fit the data. The technique used depends on
the problem at hand. For example, if the number of yearly highway trips,
population sizes, and the average driving time between cities are known
for several city pairs, it may be possible to obtain estimates of 8, and 0,
in Eq. (1.2) with nonlinear regression. Disaggregate demand models require
special calibration procedures.

Once a model has been calibrated, and before it is used for the forecast,
it should be validated. This can be done by verifying the accuracy of the
model prediction with a “holdout™ subsample (that is, a part of the data set
that was not used in the calibration process). In the case of the gravity model,
one could set aside a set of city pairs (with known populations, travel time,
and number of trip interchanges) and would develop forecasts for each one
of the city pairs by entering in Eq. (1.2) aflter calibration. The forecasts could
then be plotted versus the observed number of trip interchanges in a scatter
diagram. If the dots on the diagram are closely grouped around a 45° line
going through the origin, the model could be considered successfully vali-
dated. For well-defined problems, statistical tests can be used to verify a
demand model.

If a model does not pass a validation test, a different specification must
be tried; in doing this one must be careful because, il in changing the speci-
fication, one either intentionally or subconsciously uses the patterns observed
in the holdout sample, the holdout sample can no longer be properly used
for validation purposes.

The final step in a forecast, prediction, consists in exercising the properly
calibrated and validated model on scenarios characterized by different dis-
tributions of the attributes. These scenarios usually represent the different
options open to the decision makers. In the gravity model, for example,
prediction questions might he: What is the amount of travel between towns
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1 and 2 if the average driving time between them, a4, were reduced by 2037
Or, what if the population of both towns were to increase by 10,7

Forecasting the amount of traffic on a transportation system (i.e. the
usage) is sometimes made difficult by the existence of congestion. Because
of congestion, some of the level-of-service attributes ol a system (travel
time, primarily) depend on the usage of the transportation facility, and these
attributes cannot be determined prior to the [orecast with the demand
function. They should instead be obtained simultaneously by solving a set
of equations. If for the gravity-model example one observes that travel time
is an increasing function of usage, a3 = aa{y), forecasting would involve the
simultaneous solution of Eq.(1.2) and a; = as(y). By analogy with economics,
these equations are often called the supply-demand equilibrium equations,
or, simply, the equilibrium equations. The rest of this chapter contains a
more detailed discussion of all of these issues and illustrates how multinomial
probit fits into the demand-forecasting field.

1.2 Disaggregate Demand Models

Let us imagine that we have gathered a homogeneous population group
(ic., a group of people or entities with the same attribute vector A = a) and
that by empirical observation it is determined that a {raction p of the people
in that group opt for using the transportation facility or service under
consideration. If one now repeats the same experiment for all possible
population groups (all possible values of a) and records the results, one
would have developed an empirical relationship between a and p,

p = P(8,a), (1.3)

which will be called the choice probability fimction or, simply, the choice
function. This terminology is used because p can be interpreted as the prob-
ability that a choice maker randomly selected [rom a population group with
attribute vector a becomes a user of the transportation facility or service
under consideration. The shape of the choice probability function is what
distinguishes disaggregate demand models from one another.

The particular form of the choice function depends on the nature of the
choices. In many cases, users are observed to select from a discrete and
finite set of alternatives, i, which are numbered from 1 to I. In such instances,
one can specify a choice function for each one of the alternatives, which we
denote by Pi{6,a),i = 1, ... I, depending on the alternative under considera-
tion. The subscript / will be omitted when the alternative is unambiguously
defined. When the set of alternatives considered in the model spans the
range of alternatives opened to the choicemaker, Y {_, P;(f,2) = 1, and we
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say that we have a discrete choice model. In such cases the choice functions
give, for a given value of A, the probability mass function of the set of
alternatives.

Il the observed choice is a continuous variable X, as would happen if
we were trying to investigate the relationship among household income,
household size, and the vehicle-miles of travel per year per household (the
choice X), the set of choice functions P.(#,a), could be interpreted as a
probability density function in x, and standard econometric methods could
be used. For instance, if the choice function is such that the expected choice
{¢.g., the average vehicle-miles by familics with attribute vector a) is a linear
function of 6

E(X |a.8) = f * _ xP(6,3)dx = ba,

X

we have a linear madel that may be fitted by linear regression.

The rest of this book is concerned with discrete choice problems since
these are the problems for which special econometric tools have to be
developed. Thus, unless otherwise staled, it will be understood that the
choice set is discrete and finite.

For a discrete choice model, the total usage of the transportation facility
¥ can be obtained from the choice probability function and the probability
density function of the attribute vector F(a). If M is the population size,
the total density of choice makers with attribute vector a becoming users is

P(0,a)F(a)M,
and the total usage is given by integrating this density over the range of a:

y=m [ ... _P(0,2)F(2)da. (1.4a)

This is the demand function, which can, of course, be written in terms of
statistical expectations as

y=ME/[ P8, A}Y], (1.4b)

where E {-) represents the expectation of the quantity in parenthesis with
respect to the distribution ol A. Note that since E [ P(f, A)] gives the fraction
ol individuals in the population selecting the alternative under consideration,
(¥/M), it can be visualized as the probability that an individual sampled
at random I[rom the population selects the alternative. Because of this
probabilistic interpretation, it will be often written as P(@).

With continuous choices, it is usually desired to obtain the average choice
of the population (e.g., the average vehicle-miles of travel per year by a
typical household), which is given by E ;,[ E{X | A, #)]. In cases where the usage
is given by the sum of the average choices of all individuals (as in the case
of vehicle-miles), the usage is obtained by multiplying E [ E(X | A, 8)] by M.
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1.2.1  Properties of Disaggregate Demand Models

If the specification of a disaggregate demand model is correct, i.e., if the
choice probability function closely reproduces reality, it can be argued thal
the model captures the ongoing human decision-making mechanisms more
accurately than an aggregate model, since it deals with individual decision-
making units—or with groups of identical units—rather than with hetero-
geneous groups. Consequently, a model may be transferred to an entirely
different scenario (characterized by a different distribution of the vector of
attributes) without recalibration. This would be done by substituting in
Eq. (1.4a) or {1.4b) P(6,a) and the values of M and F(-) correspanding to the
scenario under consideration. It must be borne in mind, however, that this
transferrability property can only be attained if the choice probability func-
tion is properly selected and calibrated, and that, unlortunately, proper
validation of the choice probability function is a very difficult task requiring
enormous data-gathering efforts. Because of this and because in practical
instances the selection of P(8,a) is an educated guess, the success rate with
disaggregate demand modeling must necessarily vary [rom analyst to analyst
and will probably increase in the future when enough experience is accumu-
lated by researchers and practitioners in the field. In any case, since a properly
specified and calibrated choice probability function can be used to forecast
the choices of any group of people, disaggregate demand models are ideally
suited to study the impact of different transportation systems on different
segments of the population.

[.2.2 Disaggregate versus Aggregate Daia

It is convenient to differentiate between two types of data that are
commonly used in transportation studies. If each observation in our data
set consists of a value of the attribute vector a (representing an individual whoe
has been interviewed), and an cbserved choice, we say that we have dis-
aggregate data. If, on the other hand, the data include only information on
groups of people, we call it aggregate or grouped data. The data set for the
gravity model, which consisted of the average value of A for each city pair and
the number of people from each city pair making the choice under con-
sideration (deciding to travel), is an example of an aggregate data sct.

Disaggregate data contain more information than aggregate data and
are therefore more valuable for calibration purposes. This can be seen by
means of the following illustrative argument : If we want to study the behavior
of wealthy people, it is not sufficient to study the average reaction of a town
with high average income because even in a very rich town there will be a
significant fraction of poor and middle-income people, which will filter the
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results. Some transportation studies have indicated that much of the dis-
persion in some attributes, such as income and age, is lost when one uses
aggregate data [see, for example, Fleet and Robertson (1968) and McCarthy
(1969)]. Since the choice probability function of a disaggregate demand model
is perfectly suited lor calibration with high-quality disaggregate data (a
review of calibralion methods for disaggregate demand models is provided
in Section 1.4), it is possible to use just a [ew hundred data points in order to
obtain accurate estimates of @. The efficiency with which the information in
the data is handled with disaggregale demand models is perhaps their most
desirable feature, since it greatly simplifies the data-collection process.

1.2.3  Difficulties with Disaggregate Demeand Models

The efficiency and transferrability properties ol a disaggregate demand
model are partially offset by the result of the estimation process being a
choice function and not a demand function. In order to obtain a demand
prediction, one must enter with the choice lunction P(8, a) into Eq. (1.4). This
poses a twofold problem because it may be difficult to obtain the joint
distribution function of the vector of attributes F(a), and it may also be hard
to evaluate the integral in Eq. (1.4a).

This book will address some of these problems since, as is shown in
Chapter 4, proper use of the multinomial probit model can reduce the
difficulties.

Another problem connected with discrete choice problems lies in the
specification step, because the choice function cannot be selected arbitrarily.
Indeed, for a choice model to be properly specified, the choice {unction
must satisly

0<Pfba)<1, i=1,...,1 (1.5a)

and
I
Z P;B,a)=1 (1.5b)
i=1

for all the relevant range of & and a. This, of course, poses some problems
because specifications of Py#, a) linear in the parameters and the attributes
are not feasible. Continuous choice models do not present this problem
because with them it is more convenient to work with E{(X |Ba) directly,
and E(X]B, a) is not as severely restricted as P;(0, a).

In order to obtain reasonable specifications of discrete choice models
satisfying Eqgs. (1.5), one can introduce the so-called random utility models
[Manski (1973) has provided an cxcellent discussion of these models].
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Assume that instead of defining the choice function for each alternative,
we define a function ¥(@,a) that is intended to capture how attractive the
alternative is to a choice maker with attribute vector a. These functions will
be termed in this book the measured attractiveness lunctions®; they may
take on any finite real values and they need not be related in any way. If it
were possible to define these functions perfectly, it would be possible to
predict unequivocally the choice of an individual with a known attribute
vector. However, since according to observation, users with identical at-
tribute vectors do not always make the same decision, we define for each
decision maker in the population a set of unobservable perceived atiractive-
nesses U; upon which choice makers base their decisions.® Since the perceived
attractiveness vector will obviously vary across the population, even within
groups of people with the same attribute vector, it is conveniently modeled
as a random variable; we shall denote by U(0,a) the random variable that
would be obtained by sampling [rom a group of individuals with attribute
vector a. If the measured attractiveness functions are properly selected, they
will tend to be close to the Us for each individual in the population; of
course, a perfect match will never be achieved for large populations. One
can then introduce some unobservable disturbances £,(f.a), or error terms,
which represent the difference between U,(6,a) and ¥;(6, a), and should, one
hopes, be of small magnitude. These random disturbances can be interpreted
as capturing different things, among them, errors in the measurement of
the attributes in the data and the contribution of neglected attributes
[attributes that cannot be observed plus attributes that, although cbserved,
are not included in ¥(#,a)] toward U;.

If the distribution of £,(6,a) [or that of U,(#,a)] is known, it is possible
to obtain the choice function by calculating the probability that alternative
i is the most attractive:

P(8,a) = Pr{V;(8,a) + &£,{6,a) > V/(8,a)
+ E8a) V) #i, i#1,...,1L (1.6)

Equation (1.6) is the fundamental equation of random utility models and
satisfies the requirements of a choice function. Note that P;(f, a) is always
between zero and one and that the events in brackets (for i=1,...,])

4 The term “altractiveness” is used-instead of the term “utility,” which is commonly used in
the literature, Lo emphasize that ¥(0,a) need not meet any specific properties of utility for many
demand forecasting (and other) applications. The term “random utility model” will, however, be
preserved.,

5 Al this point we note that it is always possible to find a vector U consistent with a given
choice. Although such a vector is, obviously, not unique, it always exists. It is then mathematically
sound to assume that each and every individual of the population is associated with a perceived-
attracliveness vector consistent with his choice.
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are exclusive and mutually exhaustive (we assume in this book that £ and
FJ are continuous random variables), and consequently Zf -1 Pi{B,a)=1.1t
is thus possible to obtain choice functions by specifying attractiveness func-
tions V(#,a) and a joint distribution for the error terms &,(8, a).

The reader may wonder at this point whether this attractiveness frame-
work greatly restricts the form of the cheice lunction. This can be answered
by stating that any set of choice functions P;(,a) # 0 satislving Egs. (1.5)
can be visualized as arising from a random utility model with

Vi(0,a) = log P{0,2), i=1,...,1

3

ar_ld independent, identically distributed error terms with a cumulative dis-
tribution function that is independent of 8 and a, and is given by

Pr{é(8,a) < x} = exp[ —e~ ¥+ 0377, — < x <o

The reader can verily this statement when the logir model in the nex( section
is presented. The next section introduces some of the random utility models
that have been proposed and discusses their properties.

1.3 Random Utility Model Forms

. The functional form of a random utility model depends on the distribu-
tion of the error term vector £(8,a). In order to present different models in
a coherent way, the less general models will be presented first, and then
they will be gradually generalized.

1.3.1  Models with Independent Identically Distributed Error Terms

The first model of this type that comes to mind is one in which the crror
terms are all equal to zero. Such a model [called the rational model by
Manheim (1979)] can be useful in instances where the variability of & is
sme.lll compared to the differences in V¥ across altcrnatives for the vast
majority of the population. Route choice has been traditionally modeled in
this way with measured attractiveness given by the negative of the travel
Fime. Onc problem with the rational model is that if the specification of ¥
in terms of # and a is incorrect, the prediction errors may be sizable. In
addition, and even if the specification is very good, if 2 does not vary much,
most of the population will be assigned to the same alternative and a small
change in the attributes of one of the alternatives (e.g., travel time on one
route) could result in a major shift in the predicted number of people selecting
each one of the alternatives. This instability phenomenon has been observed
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in route-choice models but not in route-choice data. Models withoul error
terms should therefore be used very carefully and with strong a priori
grounds. .

If instead of zero error terms we model £(#,a) by a set of independent
identically distributed Gumbel variates, with zero mean and independent
of @ and a,

Pr{é(es a) < x} = exp[_e—(1+?)],

(in this expression y is Euler’s constant, y = 0.577), it is not difficult to show
that Eq. (1.6) reduces to the muftinomial logit formula

—m <X <® (1.72)

I
P.(6,3) = exp[ Vi(6,2)] / 3 exp[¥(6,a)]. (L7b)
j=1

According to McFadden (1973), Marschak (1960) seems to have been the
first to write explicitly the relationship between (1.7a) and (1.7b). The mathe-
matical derivation involves obtaining the distribution of max(U,y, ..., U;—y,
Uity - .., Up), by multiplying the cumulative distribution functio_ns o_f each
one of the U;’s and convolving such distribution with the distribution of
U, to find

Pr{U(8,a) > max[U,(0,a),...,U,_(0,a), U, (0,a),...,Ué, a)]}.

Equation (1.7b) is without question the most widely used disaggregate
demand model form in the transportation field; it has been applied to different
problems [see for example, Dial {1971) for a route-choice problem; .Lgrman
and Ben-Akiva (1975) for an auto ownership model; and Nicolaidis and
Murawski {1977) for a modal split study], and its properties are well under-
stood. Some of the most important properties of this model are explored
now, but for a more detailed treatment the reader is referred to Domencich
and McFadden (1975). A case study is reported in Richards and Ben-Akiva

1975).
( Tl)le logit formula has the so-called independence of the irrelevant alterna-
tives (IIA) property. That is:

- The relative probability of choice of two alternatives depends only on their
measured attractiveness.

This is true because, as the reader can check,
Py(0,2)/P (8,a) = exp[ V{6, a)] /exp[ V;(6,2)].

In problems where the unobserved components of the perceived attractive-
ness {the error terms) are correlated (i.e., the alternatives share some neglect_ed
attributes in the view of the choice makers), introduction of a new alternative
that is highly correlated with another one but is slightly inferior to i_t, has a
negligible effect on the choice probability of all other alternatives, since the

2 Mk mntd—
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new alternative is a very unlikely choice. In such cases, the ITA property
of the logit formula originates obvious problems unless the interdependencies
of the error terms are somehow captured by the specification of the functions
Vi(8,a). This is, however, dilficult to do in most cases. Transportation mode
and route-choice problems are typical exampies in which the logit model
can [ail to produce reasonable results (McFadden, 1973; Schneider, 1973;
Florian and Fox, 1976; Daganzo and Sheffi, [977). In route-choice problems,
for exampie, it is commonly specified that V, = —0T;, where T, is the
observed travel time on route i (Von Falkenhausen, 1966; Dial, 1971).
According to the logit formula, traffic will split itself equally among routes
with equal length, regardless of whether they overlap or not. This is, of course,
unreasonable, because addition of a minor bypass along one of two routes
with equal length adds one alternative to the choice set, and this results
in a shift of one-third of the users to the route with the bypass. This phe-
nomenon s explained if one notes that a user is not likely tc have several
different perceptions for a section of road shared by different routes and
that therefore the error terms of the two alternatives defined by the bypass
should logically be very highly correlated. Daganzo and Sheffi (1977) discuss
this at length and provide a comprehensive treatment of stochastic route-
choice models.

In other problems, the use of the logit formula seems more reasonable.

The gravity model of destination choice, introduced in the opening pages of

this chapter, is perhaps the most widely used trip-distribution model and
can be derived [rom a logit model of destination choice. This is explained
below.

Welet a, be the population in a given zone (zone 1) and a,, the population
ofzonej,j=1,2,.... I Usingthe notation in previous pages ol this chapter,
we let ay; be the average driving time from zone 1 to zone j. In order to avoid
problems with the definition of a;;, we assume that the zones are so small
that travel times between all possible pairs of points lor a given zonal pair
(1,j) are reasenably approximated by a5;. Under those conditions, there will
be many zones, I will be large, and the number of trips to each zone will be
small compared with the total number of trips.

Ii we specily the measured attractiveness of a trip to zone j by

Vi(@,3) = logia,;} — thas;,

Le, the attractiveness is proportional to the negative of the travel time and to
the natural logarithm of the population [as cogently argued by Lerman
(1975) and Kostiniuk and Kitamura (1978)], the choice function given by
Eq. (1.7b) becomes

I
Pi0,a) = azjeXP(Qzaaj)/z ay;exp(—0yas))

i=1
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and the total number of trips from zone 1 to zone j is

I
y= |:9'101/ Z azfexP(—Qzaai):l ayjexp(—0,as5), (1.8)

i=1

where 8] is the [raction of people in zone | who take a trip. This expression is
obtained from Eq. (1.4b} taking into account that, with the above assumptions
on the definition of zones, a,; and a;; are the same for all the choice makers,
and M = 6a,. Equation (1.8} s approximately equivalent to Eq. (1.2) since
for small changes in a;3; and a;; the denominator in Eq. (1.8) is approximately
constant. Furthermore, in many applications of the gravity model, the
generation of trips in all zones is exogenously determined, and in such
“production-constrained” cases [sec Wilson (1973, p. 64)], the gravity modecl
assumes the exact form given by Eq. (1.8}.

An important property of Eq. (1.7), which, as pointed out by McFadden
(1973), can be exploited lor calibration, is that for measured attractivenesses
linear i the parameters [ V{6, a) = 6(i) - a"(i), where T is the vector transposi-
tion operation and 8(i) and a(i) are row vectors containing the parameters
and attributes appearing in the specification of V], log P,(6,a) is a concave
function of 8.5 A proof that

I
log P;(6,a) = 6(i) - a’() — log _Zl exp[6(j} - a"(j)] (L.9)

is a concave function of # can be built around Hélder’s inequality, parallelling
the geometric programming proof of the (log, log} convexity of posynomials
[see Avriel (1976, p. 194) for instance].

An interesting figure of merit of a random utility model is the expected
level of satisfaction derived by a randomly selected choice maker from making
a choice out of the set of alternatives. According to the definition of the
perceived-attractiveness vector U= (U,,...,U;) given in the previous
sectiom, it is reasonable to assume that the satisfaction of a choice maker, S,
equals the perceived attractiveness of the chosen alternative. But since, by
definition, the chosen alternative exhibits the largest perceived attractiveness

S= max (U;).
H
Since the U;s are not observable, S cannot be observed. We can, however,

derive the distribution of the satisfaction across all the choice makers with
A = a_This is done below:

Pr{S < x{6,a} = Pr{Vj(f,a} + £.(6,a) < x; Vi},

¢ Appendix D provides a summary ol important propertics of convex and concave functions.

= an

= W=
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and since the ;s are mutually independent,

Pr{§ < x{0,a} Pr{¥(#,a) + &(0,a) < x}

!

=~ -

I}
-

Pr{(60,2) < x — V{(6,a)).

i

Entering with the Gumbel distribution function yields

I
Pr{S < x|0,a} = [] exp(—exp{—[x — V(0,2) + y]})
i=1

=exp(— Y exp{~[x— Kb.a) + «,’]}),

i=1

=exp { —exp|:—(.\' + v —log é:l exp[ V{0, a)]):|},

which also belongs to the Gumbel family. Therefore, its mean is

I
S(8,a)=log ) exp[V8,a)], (1.10)
i=1

which is the logarithm of the denominator in Eq. (1.7b), and its vanance is
&2, A different derivation of this expression is given by Sheffi and Daganzo
{1978a}. Several authors have suggested the use of the average satisfaction as
a measure of system performance since S{f,a) can be interpreted in a way
similar to consumers’ surplus (Williams, 1977, Ben—-Akiva and Lerman, 1978;
Shefl and Daganzo, 1978a).

The logit model, as mentioned above, is by far the most widely used
random utility model in travel demand analysis. In addition, binary logit
models (and/or binary probit models—see next section) have been applied to
traffic flow, safety, toxicology, economics, sociology, and other disciplines
[see, for instance, Miller (1972), Versace (1971), Finney (1971), Theil (1967),
Warner (1962), and Berkson (1944)]. In the binary case, it is convenient
to express Eq. (1.7) as

log[P,(8,)/P5(6,a)] = Vi(6,2) — V5(6,2)

or, letting V,(8,a) — V,(0,a) = V(0,a), as

P(0,a) _

which is the traditional way of writing the binary logit model.
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Despile the attractiveness of the logit model for many applications, there
are practical situations (such as in stochastic models ol route choice) where
it fails to produce reasonable results. Because for such problems it is difficult
to come up with a priori specifications of ¥; that do not behave illogically,
some authors have developed ad hoc corrections to the logit formula that
apply to specific problems (Sheffi, 1978k, Domencich and McFadden, 1975}
and others have developed models with interdependent error terms and error
terms with different variances. These latter ones are reviewed in the next
section.

1.3.2 Closed-Form Models without Independent Identically Distributed
Error Terms

The two models about to be introduced have been recently developed and
their properties are not yet fully understood. To my knowledge, neither one
has yet been used but both of them may eventually find appropriate applica-
tion arcas.

If the error terms are given by the [ollowing independent exponential
distribution with mean zerc and standard deviation a(8,a) (see Fig. 1.1):

exp{[x — o,(6,a))/c:(6,2)} X < g;(8,2),

1 x > o,(8,a), (112)

Pri{¢(f,a) < x} = {
the probability of choice can be obtained after a few algebraic manipulations
(Diaganzo, 1978a). We note that for this model, the perceived attractiveness
of any alternative cannot exceed an upper bound, W{(#,a) = V(6,a) + o{6.3).
In writing the choice function of this negative exponential distribution (NED)
model, we omit the variables @ and a associated with a;, V;, and W, and we

10 S 0190
r o,=1.0
0Bl a=0 ! 9;=30 1 oa
06 - 06
| o Prik<x}
04 ! - ca
9.8 =
- L -
0.2 - oz
o.0l_L | 1 1 1 1 ] 0.0
v =2 ] 2 3

Fig. 1.1 Cumulative distribution function of the error terms of the NED model.
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write (f) for the alternative with the ith largest upper bound on the perceived
attractiveness W. We also adopt the convention that W,, = o0 and W, |, =
— co. The choice function is

I G'?l k W — W
b (o5 )
7

=106 j=1 9
LB . A £7)
— EXp(— Z ;Qlj.#m):& (1.13)
j=1 )

If we let Ay, be equal to the difference of exponentials in the above
expression divided by }%_| o', the choice functions for each one of the
alternatives can be calculated recursively by

P(0,a) = U(.T)I[A(i} + FPis 1)(Baa)au+ 1)], i=1,...,1 {1.14)

with P, ,,(8,a) = 0.
As an example, the reader can check that if ¥, =00, ¥, =1.7, and
V; =05,and g, = 3,0, = 1,and o3 = 2, the choice probabilities are

p; = 0.061
p, = 0.086
ps = 0.853

3
Y p; = 1.000.

i=1
As is expected of a model with different variances, increasing the variance
of an error term in Eq. (1.13) in a problem with three or more alternatives
with the same measured attractiveness tends to increase the choice proba-

bility of the alternative with the enlarged variance. Table 1.1 illustrates the
fact for a three-alternative problem.

Table 1.1

Variation of the Probability of Choice of a NED Choice Model
with the Variance of the Error Term of an Alternative®

6  Variance=0? p, =p, P 6  Variance=0* p =p, Pa
0 0 0.4324  0.1353 1.0 10 03333 03333
02 0.04 04279  0.1442 12 1.44 0.2988 04025
04 0.16 04164  0.1673 1.5 225 0.2687 04626
0.6 0.35 0.3979  0.2042 20 4.00 0.2427 0.5147
0.8 0.64 0.3711 0.2578 o o0 0.1840  0.6321

‘Daa: V=W =W¥=0,0,=0,=1;0,=4.
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The NED model could probably be generalized by a model with Weibull
error terms. In such a case

exp( - {[— X+ O-i(ﬂ’ a)]/a,-(ﬂ, a)}")a x = 0"-(0, a):
L, X > g;(0,a),

Pr{fi(f,a) < x} = {

and a more complicated expression would be obtained instead of Eq. (1.13).
Beilner and Jacobs (1971) give a simple formula for the probability of choice
of a Weibull model in which all the perceived attractivenesses have the same
upper bound. Distributions without a full range, such as the Weibull, gamma,
or negative exponential, can be useful in instances where there is a clear
bound to the perceived attractiveness of an alternative. In route-choice
problems where travel time is the main determinant of attractiveness, for
example, it is not unreasonable to assume that the perceived attractiveness
of a route cannot be positive, since perceived travel time cannot reasonably
be expected to be negative.

If instead of different variances one is interested in developing inter-
dependent error terms, as would be the case in many modal split problems,
it may also be possible to do so. McFadden (1977) has been recently investi-
gating a generalized extreme value (GEV) model that admits positive correla-
tions among error terms but uses error terms with the same variance.

Although there still seems to be some unresolved questions regarding the
GEY model, the following three-alternative special case seems to work well
when two of the error terms (without loss of generality we assume they are
&, and ¢,) are positively correlated and independent of the third cne,

[/ = 4 Va1 =n)]=pgV it =p)

[eVlf{l—.vl + EV:J'U —ﬂ)]l 4 PREN

i=1,2;0<p<1 (I.15a)

i = o

[eVlfU —-p) T esz(I *ﬂ)}l 4 eVJ’

In the above cheice [unctions, ¥; is short for ¥(#, a) (the attractiveness of the
ith alternative), and the parameter p indicates the extent to which the error

terms of alternatives 1 and 2 are correlated. Note that if 5 = 0, Egs. (1.15)
reduce to the MNL model.

For this model, and as is shown in Chapter 4, the expected satisfaction is

S = log{[e" /i =) 4 Feli=r1=r | g¥a} (1.16)

i=3;0<p<l (Li5h)

Since the satisfaction function of a random utility model is always convex
(also shown in Chapter 4) it is not difficult to show that the logarithm of the
choice probability is a concave function of V for any given p. Therefore, as
happens with the MNL model, if the measured attractiveness [unctions are
linear in @, log P,(A, a) is concave in @ for any given p.

T
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Table 1.2

Variation of the Probability of Choice of a GEV Modecl
with the Correlation of Two Alternatives

[ P =Pz Pa P Pr=Dpa P

] 0.3333 0.3333 0.6 0.2845 04311
0.1 0.3256 0.3439 0.7 0.2759 0.4482
0.2 0.3176 0.3648 0.8 0.2673 0.4654
0.3 0.3095 0.381¢ 09 0.2587 0.4827
04 0.3013 0.3975 1.0 0.2500 0.5000

0.5 0.2929 0.4142

“Data: ¥, =1, =¥ =0

The existence of positive correlations between two alternatives with the
same expected perceived attractiveness tends to decrease their chances of
being chosen (see Table 1.2}, which is the desired model behavior.

The usefulness of the NED and GEV models, however, remains to be
shown. since both of them are generalized by the multinomial probit (MNP)
model, which is introduced in the next section.

1.3.3  The Multinomial Probit Model

The multinomial probit (MNP) model is a random utility model in
which the error terms have a joint multivariate normal (MVN) distribution
with zero mean and an arbitrary variance—covariance matrix.” Thus in an
MNP model, the variances of the error terms can be different and the error
terms may be correlated. Appendix C discusses the properties of the MVN
distribution that will be used in this book.

Unfortunately, the choice function of a MNP model cannot be easily
wrilten in closed form, except for the case of two alternatives, and thus must
be evaluated numerically. A significant part of Chapter 2 is devoted to
evaluation procedures of the choice function.

A binary probit random utility model is defined by

Ul(os a) = Vl(gs a) + 51(01 a),
U.(6,a) = V5(6,2) + C.(0, ),

where the error vector &(#, a) is bivariate normal with mean (0,0) and co-
variance matrix X0, a).

(1.17)

7 The ercor lcrms are assumed o have zero mean because otherwisc it is always possible to
add their mean £(0.a) to the measurcd-attractiveness vector and subtract it from the error-term
veclor to yvield an cquivalent MNP model wilh zero-mean error terms.
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The probability of choice for alternative 1 is

Pl(ﬂs a) = Pr{Vl(B’ a) + él(Bs a) > VZ(Gaa) + 62(91 a)}
= Pr{¢,(8,a) — £,(6,3) < Vy(0,a) — Va(6,2)}.

Since, as shown in Appendix C, &,(8,a) — &,(f,a) is normal with zero
mean and variance o%#,a) given by the sum of the variances of ¢, and ¢,
minus twice the covariance of £, and &,, one can write

_ Vi(0,2) — V;(0,a)
P.(0,a) = (D(——W 2 ),

where ®(-) represents the standard normal cumulative distribution function.
Letting V(6,a) = [V.(0,a) — Va(0,a)]/a(0,a) and using the probit trans-
formation @ !(-) on both sides, we have

O~ 1[P.(0,2)] = V(0,a), (1.18)

which is the form of the binary probit model commonly used by econc-
metricians, toxicologists, etc. [Note the difference between the definitions
of (0, a) for logit and probit models.] The book by Finney (1971) is devoted
to the theory and application of the binary probit model. The binary probit
model has been applied to similar problems as the binary logit model [see
Lisco (1967) for one of the first applications in the transportation field].
To demonstrate the effect of covariance terms in E4(0,a), Fig. 1.2 displays
the probability of choice of alternative 3 for the following model with different

[] T T
Gy=<=

0.5

10

0.4~ -

0.3 -

0.2 1

o,
Fig. 1.2 Choicc probability of alternative 3 for a MNP model in which the error terms of
alternatives | and 2 are correlated [corr(é,, &,) = ;] and have a common variance, different

from alternative 3's [var(¢,) = var(é;) = 1, var(é;) =0,]. [Adapted from Daganzo er al.
{1977b).] ‘
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values of @, and 8, (Daganzo ef al,, 1977a,h):
V,(8,2) = V4(8,a) = V5(0,a) =0,

|0, 0
T(0,a)=|0, | O
0o 0 0

Comparing the MNP model with the NED and GEV models (see Tables
1.1 and 1.2 and Fig. 1.2), it can be seen that the MNP model can capture
the same phenomena as the other models. One notices that for 6, =0, p;
increases with 0, in a similar way as p, increased with o3 for the NED
model, and also notices that for 8, = 1, p; increases with ¢, as p; mcreased
with p for the GEV model. Although the numerical value of py does not
change with @, and 0, in the same fashion as it changes with the parameters
g; of the NED modzl, and p of the GEV model (the models are different
after all), it is clear that the MNP model can behave similarly to the other
two il the parameters 6, and 6, are properly chosen. In addition, the MNP -
model generalizes the NED and GEV models by capturing phenomena
these models cannot.

1.4 Calibration of Discrete Choice Models

Several statistical techniques can be used to calibrate the parameter
vector & of a random utility model. The most widely used ones are dis-
criminant analysis, data grouping, and maximum likelihood. All these tech-
niques are applicable to disaggregate data sets, ie, dala sets in which each
observation consists of an observed choice and an attribute vector for an
individual from the population.

1.4.1 Discriminant Analysis

The output of discriminant analysis is a set of functions of the attributes
a, which are used to classily the population into groups of individuals that
are likely to select the same alternative [see Anderson (1958), for example].
Such functions are called discriminant functions; they may be linear or
quadratic (depending on the assumptions of the model) and are defined for
each pair of alternatives Dy(a). According to the theory, alternative j is
predicted for all the persons with attribute vector a if

D () > log(p;/p) Yk # . {1.19)

In Eq. (1.19) and in the rest of this subsection, p; and p, are the fractions of




the population (estimated from the data or other sources) selecting alterna-
tives J and k.

Since discriminant analysis associates a unique alternative with each
attribute combination, it seems reasonable to conjecture that it may be
related to the rational model. We now explore this relationship.

Since the discriminant functions have the two properties [see Anderson
(1958)]

Djk(a) = —ij(a) and Dij(a) + Djk(a) = Dy fa),

the functions
Diy(a) = Dj(a) — log(p;/p) Vi k
also have the above properties. If we now define the functions of a
Vi(a)=0 and Vi{a) = D; (a). i=2,3....1

the aforementioned properties ensure that ¥j{a) — ¥(a) = D/;(a). Thus, since
Eq. (1.19) is satisfied if and only if

(@) >0 Yk j,
it is also satisfied if and only if

Via) > Vi{a)  Vk#j, (1.20)

which is the attractiveness maximization principle for a rational model with
measured attractiveness vector V(a). Consequently, discriminant analysis
can be used as a way of calibrating the rational model whose objective is to
minimize the probability of misprediction for a randomly selected individual.
Discriminant analysis was one of the first techniques to be applied to &
binary discrete choice model in transportation (Beesley, 1965; Quarmby,
1967). Its use should, however, be limited to the rational model since for
other models there is not a clear and convenient relationship between the
discriminant functions and the choice function.

i.4.2 Grouping of the Data

Another possible calibration method that has been applied to binary
models (logit, probit, and others) consists in dividing the data into groups
with similar attribute vector a, and recording the observed fraction of choice
makers in each group who select each alternative.

Letting p,, denote the observed fraction of choice makers selecting
alternative 1 in class i, it is possible to convert these fractions into equivalent
“probits” or “logits” by the transformations @~ '(p) and log[ py/Al — piy)]

[sce Egs. (1.18) and (1.11)]. One can then use generalized least squares on
Egs. (1.18)and (1.11) to cstimate 0. This technique was introduced by Berkson
(1953) and is discussed by Finney (1971) and Domencich and McFadden
(1975). The problem with it is that the data must be grouped in such a way
as to preclude and Py, [rom being cqual to t or 0, and such tampering with
the grouping will tend to bias the results. Grouping has the further dis-
advantages of giving away much of the information inherent in disaggregate
data (as discussed in Section 1.2} and becoming infeasible with more than
two or three attributes (because of the large number of groups necded).

1.43  Maximum Likelihood

The maximum-likelihood approach seems to be the most cllicient way
of calibrating random utility models (except the rational model)} and is
discussed next. Some of the details and special problems with it will be
highlighted i Chapters 2 and 3.

The maximum-likelihood method consists of selecting the value of the
parameter vector § that makes the data look most reasonable. This is done
by writing the probability density of the data for a given parametcr value
[the result is L(), a function of 0, whiclh is called the likelihood function]
and finding the value of @, 8, that maximizes the likelihood function.
Maximum-likelihood estimators are statistically well behaved. Their statis-
tical properties for the MNP model are explored in Chapter 3.

If, as is commonly the case, one can assume that the different individuals
of the population act independently, the likelihood function is

N

L{0) = H Pq"](ﬂ, 3(")) : F(a[,,)), (1.21)

n=1

where a,, is the attribute vector of the nth obscrvation, ¢, the choice of
the nth observation, and N the number of observations in the data sct. This
equalion is based on the probability of the nth observation being given by
the probability ol drawing an observation with attribute vector A = ay,,
times the condilional probability of observing choice ¢, given that A = a,.
Since the terms F(a,) are not a function of 8, their values do not affect the
maximum-likelihood estimate and they can be omitted from L(@).

It is usually more convenient to find § by maximizing the logarithm

of the likelihood function, the log-likelihood function,

N
log L(o) = 2 1Og Pc(,,)(gs laln)) (1 22)

n=1

= ey
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because log L(#) is a sum (rather than a product) of small numbers and its
maximum coincides with the maximum of L(#).?

Numerical technigues must generally be used to find #. When the log-
likelihood function is well behaved, the task is tremendously simplified. In
particular, note that since the log-likelihood function of linear-in-the
parameters MNL and GEV models is a sum of concave functions [log P;{¢,a)
is concave in @ for these models], log L{f) is a concave function, and 1f it has
a stationary point (i.e., a point where the partial first derivatives vanish),
that point is a unique local-global maximum. This property [acilitates the
search for @ and is used in existing MNL calibration codes such as the one
of Berkman et al. (1977). Ways of finding @ for the MNP model are discussed
in detail in Chapter 2.

1.5 Prediction with Discrete Choice Models

This section reviews how choice models are used after calibration. As
was mentioned in Section 1.2, the output of the calibration process is not
the demand [unction, but a choice function. It is thus necessary to perform
some additional calculations if the total number of decision makers selecting
an alternative is to be found [see Eqgs. (1.4}].

Similarly, if one wants to calculate the average satisfaction in a large
heterogeneous group, S(8), we would have to average the individual satis-

_____ (U}, across the group. The expectation of
max;=,...,
change across the group

S(6) = E; 4| max (U,-)].

S =E, {E-: max (U,-)|A:|}
i=1 I

or, since the quantity in braces is the average satisfaction for a heterogeneous
group, as

S(0) = E[S(6,A)] = j S(8, a)F(a) da (1.23)

where F(a) is the probability density [unction of A across the group.

8 The maximum of L(#) and log £L{8) coincide because log(-) is a monetonically increasing
function of its argument and, consequently, L(8) > L(0) il and only if log L(J) > log L(6).

L

1.5 Prediction with Discrete Chaice Models 23

The same technique can be applied to any other individual figure of merit,
7(U), whose average over a large heterogeneous group T(0) is sought. First,
one derives an expression for the average ol ={U) across a homogeneous
group T(0,a) and then one expresses T(0) as :

T(6) = E, [T A)]. (1.24)

For instance, in automobile-ownership models, the alternatives of consumers,
which we label from zero to an arbitrary large number, are the number of
cars owned. A car-manufacturing company would typically be interested,
among other things, in the average number of cars owned by a family unit
T(6). To calculate T(#) we first define 7(U) as the number of cars owned by
a family with attribute vector U. This is indeed a function of U that can be
defined as

H(U)=1 ifand only if U;> U, Vi # i

The expression for the average number of automobiles per family across a
homogeneous group, T(8, ), is easily derived:
1 .
T(0,a) = E[t(U}|A =a] = > iPr{z(U} = i|A = a}
i=0
I H
= ¥ iPr{U;> U, Vj#ilA =a} = 3 iPi0.a).
i=0 i=0

One could now enter with this expression in Eq. (1.24) to obtain T(0). The
problem is that Eqgs. (1.4), {1.23), and (£.24} are difficult to evaluate since
they cannot be reduced to a closed form.

A widely used prediction method consists ol dividing the population
into a few groups ol decision makers with similar attribute vector, per-
forming the prediction for each one of the groups, and adding the predictions
ol each group to yield a total prediction. If one letsa® and m™ be the represen-
tative attribute vector and the total number of cholce makers, respectively,
in group k, one can write for the prediction from group k, T®{):

TW(0) ~ T(0,a®) {1.25a)

since within group k, A & a® and E,[T(6,A)] = T(8,2%).
Of course, the total prediction is

(k)

K
T) = 3, T¥0)

m
—_ (1.25b)
M

where K is the total number of classes.
For Eq. (1.25b) to be accurate, however, the number of classes must be
substantially large, especially when the specification of the choice [unction

e i o e
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includes several attributes, and calculating T(#) may be cumbersome. In
order to circumvent these problems, more-efficicnt prediction techniques
have been explored by different researchers. Chapter 4 is devoted to this
subject.

In some instances, when the population of choice makers for which the
prediction is being made is very homogeneous, it may be possible to use
the average attribute values of the population, A, as representative of all
the individuals,

T(6) ~ T(6,A), (1.26)

which greatly simplifies the prediction process. This approach, however,
will give incorrect results when, as is often the case, the attribute vector
varies significantly. Since the errors that can be committed with this approach
can be very large, one should use it only after careful consideration.

In addition to obtaining T(6), the demand forecaster will usually be
interested in obtaining confidence levels on the predictions. This is needed
because, as in regression analysis, the value of @ calibrated from the data
varies with the data set and, consequently, so does T(6). If one regards the
maximum-likelihood estimate @ as an outcome (corresponding to a certain,
random, data set) of a random variable @, one can also regard the prediction
T(#) as an outcome from a random variable T(®). One hopes that the mean
of T(8) will be close to T(8,) (8, is assumed to be the true value® of 8) and its
variance will be close to zero. Under those conditions one can build short
confidence intervals for T(@,).

Continuing the analogy with regression analysis, we note that even if
the maximum-likelihood estimate coincides with the true value of the
parameter, the average value of ©(U) cannot be predicted deterministically
for small population groups because different groups (of the same size and

with the same distribution of A) will in general exhibit different averages.

The average of t(U) across a group of individuals, Y m_; T(Ugm)/M (U,
represents the perceived attractiveness vector of the mth individual), must
therefore be regarded as a random variable that converges in probability
to T(8,) as M increases. If the distribution of ) »_, ©(Uj,,)/M is known, one
can use it to construct prediction intervals. Chapter 5 explores the statisticai
aspects of predicting with disaggregate demand models.

To illustrate how one can develop information on the distribution of
¥M_ | ©(Uyy)/M we derive the variance of this quantity for the automobile-
ownership example.

® Asis customary in econometrics, we assume there is such a thing as a true specification and
a truc parameter value.
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The second moment about the origin of 7(U) for a randomly selected
individual from a homogeneous group, T(8,, a), is
I

T0,,2) = E[*(U)|A = a) = }, ©P{0,a) (1.27)

and since the second moment about the origin for a randomly selected
individual from the population, T(8,), satisfies

T@,) = E. [13U)] = EJE [ (U)|A =a]} = E | T(6,.a)]
we can calculate T(8,) with the classification method

X = m)m"‘)
a,) = T@,,a")—.
(6.) k;1 I,

=il

Assuming that the M individuals of the group act independently and that
they have been sampled at random, the variance of the average value of
z(U) for the group is M~ times the variance of <(U):

|: M I(U(m)):| T(ga) - T(Bﬂ)z
var = .

. 7 (128)

m=1

The variance of the total number of automobiles owned by the group is, of
course, M ['Iz"(ﬂa) — T(8,)*]. Note also that if M is moderately large (in the
tens or more) the central-limit theorem guarantees that the quantities of
interest are normally distributed.

An unrelated prediction problem arises when some of the attributes
faced by a choice maker depend on the choices made by other choice makers.
In some of these cases, the distribution of the attribute vector A depends on
the numbers of choice makers selecting each alternative and cannot be
obtained a priori. In the car-purchasing example mentioned at the beginning
of this section, it would be reasonable to postulate that if M is large, the price
of automobiles would increase with the number of cars purchased by the
population according to the standard principle of economic supply. Since
the price of automobiles is an attribute of any reasonable car-purchasing
model and the price is not known beforehand, one cannot obtain a prediction
dircctly. Ilowever, onc could obtain, at least conceptually, a function relating
the figures of merit previously discussed (y, S, T) to price © [we write y{n),
S(n), etc. to denote such functions]. Since we postulate that the price =
depends on T{0), we write 7{T) to denote the supplier’s price function. The
car market is said to be in equilibrium if its values of , and T, simultancously
satisfy o{T,) = m, and T(n,) = T,. In general problems, the variables = and
T may be vector valued and need not have an economic interpretation.
For instance, in transportation studies an attribute that typically depends
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on the usage y of a transportation facility is travel time. If travel time ¢ is
one of the attributes in the choice function, one has a similar situation in
which an equilibrium solution may be formed by solving

Vo = YEah
to = t(Vo);

in these equations the function ¢(-) depicts how the transportation facility
becomes congesied with increased use.

Equilibration problems become complicated when several markets
specializing in different commodities and competing for the same customers
must be equilibrated simultancously. This happens, for instance, in trans-
portation-network problems, where the number of people using a road
depends on the travel times on all other roads. Chapter 4 contains a descrip-
tion of techniques that can be used to analyze equilibration problems and
shows how the MNP model is extremely useful for solving some of these.

1.6 Practical Considerations in Demand Modeling

This section is not included as an introduction to an aspect of MNP,
but rather as a closure on the subjects that have been discussed so far in
this chapter. The section provides a brief summary of accumulated conven-
tional wisdom in the specification and application of demand models so
that, in addition to being an introduction to the MNP model, Chapter 1
will also serve as a concise introduction to demand modeling with dis-
aggregate demand models. Domencich and McFadden (1975) and Stopher
and Meyburg (1975, Chapter 16, in particular) provide a more comprehensive
treatment of practical issues.

In specifying a model one must decide the attributes that are going to
be used, the number of parameters that one is to estimate, and the fuactional
way in which attributes and parameters are combined in the choice function.

The following four features (in approximate order of importance) should
be carefully considered when selecting attributes: ’

statistical fit,
relevance.

availability,
reasonableness,

An attribute should be apailable as part of the data in both the calibration
and the prediction stage since otherwise such stages cannot be carried out.
It should be noted, though, that an attribute that is not forecastable for
certain problems may be forecastable in other instances. For example,
although automobile ownership is a good explanatory attribute for trip-
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generation and modal-split models, it is typically difficult to forecast and
its use for a long-term prediction is not recommended. On the other hand,
since the antomobile ownership characteristics of the population do not
vary very much from year to year its use may be perfectly justified for a
short-term forecast. Poor availability 1s one of the main stumbling blocks
in trying to incorporate some marketing ideas {such as attitudinal variables)
into demand models.

The next item on the list is reasonableness; that is, a variable should be
considered for inclusion in the model only if there is some strong a prior
feeling that there i1s some cause-and-eflect relationship between such variable
and the choice probability.

The statistical fit feature includes the standard statistical properties
that one likes to see after the model 1s calibrated. Namley, the variable
should preferably not be highly correlated with other atiributes that appear
in the specification of the model and should improve significantly the fit
of the model 1o the data. The statistical fit can be checked by the statistical
significance of paramelers associated with the attribute under consideration
or by the improvement in goodness of fit before and after including the
attribute. Goodness-ol-fit measures for choice models have been developed
in the literature and are discussed in Chapter 3.

In contrast to the previous three criteria for variable selection, the last
one, relevance, suggests a reason for including (rather than excluding) an
attribute in the model. Since the purpose of demand medeling is to assess
the consequences (effects) of certain actions {(causes), 1t seems desirable to
include in the model variables that describe the actions. Such variables are
usually called policy variables in the demand-forecasting jargon. If one is
interested in finding out how the fare of a transit system affects ridership,
one should consider the fare as a possible attribute in the specification of
the model (the fare would typically enter with a ncgative cocfficient in the
measured attractiveness of the considered transit alternative). One rarely
has availability problems with policy variables since by definition they are
forecastable. However, inclusion of a policy variable in a model should
always be subject to the tests of reasonableness and statistical fir.

The selection of parameters to be calibrated cannot be done indepen-
dently of the attribute-selection stage since the number of parameters is
intimately related to the number of attributes; however, as a general rule,
one should be careful not to include so many parameters in a model that the
resulting goodness of fit is due to the large number of parameters rather
than to the causality of the specified model. It is my opinion that this is a
mistake often made by practitioners, and which is made all the more templing
by the ever-expanding capacity and speed of computers. The emphasis in
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model building should instead be on parsimonious models (with few param-
eters) that can be properly tested and verified.

The specification of a random utility model involves selecting the mea-
sured attractiveness functions and, for MNP models, the relationship between
the covariances of the error terms and some parameters and attributes.
In the comments that follow only the logit model will be discussed. The
discussion of specification of error term covariances is left for Chapter 3.

For MNL analysis the specifications used in practice are almost always
linear in the parameters since this is the way in which most computer pro-
grams work and is also a way of ensuring the concavity of the log-likelihood
function. Thus

Vi, 2) = 0(i) - (D)

where “-” represents the vector dot product, the superscript T denotes the
vector transposition operation, and 8(i) and a(i) are row vectors including,
respectively, the set of parameters and attributes that appear in Vi(0,a). By
sctting the first element of the a(i} vector equal to 1, one can include constants
in the specification of the attractiveness of the alternative.

If desired, the elements of a{i) can be functions ol attributes, rather than
the attributes themselves, sincc for concavity of log L(@) it is only required
that V(@,a) be linear in &.

A parameter 8; can appear in one or more alternatives. Parameters that
appear in more than one alternative are called gereric. An example is
provided by a modal-split model in which the travel time by each one of the
modes (these are different attributes) appears only in the measured attrac-
tiveness of the corresponding mode but all are multiplied by the same
parameter 8;. Such a parameter can be interpreted as the intrinsic contri-
bution of travel time toward any attractiveness of any mode. I, on the other
hand, a different parameter were used with the travel time by each mode,
the value of travel time would be tied to an alternative and the parameters
would be called alternative specific. : :

It is tempting to use alternative-specific parameters in model specifi-
cation because they usually improve goodness of fit; however, one should
bear in mind that by doing that one may be capturing spurious correlations
rather than causes and effects.

Some guidance can also be given regarding the appearance of attributes
on different attractivenesses. In most models, level-of-service attributes
should logically appear only in the attractiveness of the alternative that
they describe (socioeconomic attributes may appear in several alternatives
simultanecusly). Of course, there are cases where this rule produces unrea-
sonable results (as in the route-choice example that was used to illustrate
the problems with the ITIA property of the logit formula) and in such cases
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it may be wise to depart from it. 1L seems, however, even more reasonable
to use a model that will enable the model builder to stick with the rule
since it is not clear how one should depart [rom it.

In the transportation ficld there are already countless examples of the
application of the logit model and a growing professional wisdom seems
to be emerging.



Maximum-Likelihood Estimation:
Computational Aspects

Chapter 2

2.1 The Maximum-Likelihood Method .

This chapter discusses the problems associated with finding the
maximum-likelihcod estimates of the multinomial probit model from dis-
aggregate data. It also presents the techniques that have been proposed to
address the problems and analyzes their relative merits.

The maximum-likelihcod-estimation procedure is a standard statistical
estimation technique that sets the parameters of a model equal to numbers
0. called estimates, that make the data look most reasonable. The technique
is used in many econometric and statistical-inference problems, including
multiple regression, discriminant analysis, and contingency tables. Maximum
likelihood also sesms to be the best estimation method for discrete choice
models (see Chapter 1). Before entering the subject in more depth, however,
asmall numerical example that can be solved by hand is provided to illustrate
the approach in a MNP context.

2.1.1 A Driver Behavior Analysis Example

At any intersection controlled by a stop sign, the drivers on the low-
priority approach are continuously deciding whether the gaps on the high-
priority traffic stream are safe for crossing: Normally, drivers aceept long
gaps and reject short gaps, but gaps of intermediate length may either be
accepted or rejected, depending on the aggressiveness and the mood of the

30
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Table 2.1

Gap Acceplance Dala St

Rejeeted gaps Accepled gap
Driver {sec) (sec)

9,11 10
— 20
1,5.3.3.6 9
5,10 12
— 25

7 10
— 12
- 6

B S YR

e = )

o]

_driver at the head of the queue. In a “gap-acceptance™ study, one is interested
in inferring the characteristics of the driver population so that unsignalized
!ntersections can be adequately designed. A field study could yield the
mformation in Table 2.1

One can then formulate the hypothesis that the nth driver in the sample
has a eritical time value such that gaps longer than it are accepted and
smaller gaps arc rejected. The values of the critical time for an individual
may change from gap to gap, so that [or the sth driver and any given gap |,
the critical time 1, can be expressed as

r(uj) = T(n) + ‘:(n_j)- (2-1)

. In this formula T, is the value around which ¢,,;, fluctuates for the nth
driver and €y 18 the amount of the fluctuation. Neither T, nor £y CaN
be observed, but by definition E(&;) = 0. It can be hypothesized, however,
ti_lat T, varies approximalely across the population according to a normal
distribution with mean T and variance ¢%. If, in addition, and for simplicity,
One.hypothesizes that the fluctuations &, arc mutually independent normal
variables with var(&, ;) = ¢2, independent of the individual and the gap,
one can write (he joint distribution function of tg, = (fy1), {2, - - .) for the
Ht’h 1_ndiv1'dua1. The aim of a gap-acceptance study is to estimate T, 67, and
a; since as is known in the highway traffic literature [see Blumenfeld and
WEJSS (1970), for instance] the capacity and level of service of an unsignalized
tnterscction depends on all of these paramelers. For a randomly selected
driver, t,, 1s multivariate normal since, as seen from Eq. (2.1), it can be
€xpressed as-a linear combination of normal variables. [is mean vector is

E(t(n]) = (TJ T) T’ .- )
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and its covariance matrix is
2 2
oy + o} ar oT
2 2 2 2
cov{t,,) = or ot +o0; of

To derive the covariance matrix, we have used the following property of
covariances:

COV(T(") + é{llj)’ T(n] + C’(Hj')) = CUV(T("]: T(n]) + COV(C(JU)’ T(u))
+ COV(T(H)‘} é(rrj’}] + COV(é("ﬂ, é{uj’))

and the fact that cov(T,, Ty} = 0%, cov(&yy), &) = 0 if j £ j and o2 if
J=F,and cov(¢,,, Ty = 0.

The probability of the observed gap-acceptance pattern for the nmth
driver conditional on the gap sequence received by the driver, Pr{Ry,, Ay}
depends on the critical times of the driver, ¢, ty,s,, etc., as follows:

PI{R(MM A(rr)} = Pr{[(ul] > R{nl]: t(rr2j > R(u2)s ey t(u],.] > R(nl,,))
1
and  tgy, a0y < Aw|Reyps Apls (2.2)

where J, is the number of gaps rejected by the nth driver, R, =
(Rurys - - - s Rp,y) 18 the vector of rejected gaps by the ath driver, and, in
this example only, A4, is the accepted gap.

This is, however, equivalent to the choice probability of the first alter-
native of a random utility model with perceived attractiveness vector

U(n) = (01 R(nl) - I{,,”, L] R(n!,,) - t(uJ,,)a lt(u.j',,+l) - A{n))

éince Eq. (2.2) states that the first element of Uy, is the largest.
Since t;,y is MVN distributed, U,,, is ailso MVN distributed, and Eq. (2.2)
corresponds to a MNP model with

V(n) = (0: R(nl) - 911 v sR(nJ,.] - 01: 91 - A(rr})

and
0 0 0 0o --- 0
0 02 + 03 62 92 et —02

Eiﬂn):(.) Qz 024_‘93 92 —!92 ’

0 _92 _HZ —92 tts 62 + 03

where ¢, = T, §, = o, and 0 = 6. The dimension of V,, (and Z,,) varies
with » and equals the number of rejected gaps for the driver plus 2.

A similar model of driver behavior has been estimated by Daganzo
(1978b) and values of @, = 6.3 sec, 8, = 4.8 sec?, , = 3.2 sec? were obtained.

L
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For the example discussed here, it will be assumed that all drivers have the
same average critical time T, ie., 0, = 67 =0, since in that case the
components ol U, are independent and the probability of chaice is greatly
simplified. For the nth driver Eq. (2.2) yields

Aw T\ (T—R,
Pr{R("] ! A(")JI = (D (m) ) H q) ( (H-”) )
-

Tz :

— n=12.... (23a)
c i=1

The likelihood function of the unknown parameters (T and G:) is given
by the probability of the observed gaps on the main road times the conditional
probability that they are accepted or rejected as shown in the data set:

L(T,0,) = Pr{observed gap sequence)
- Pr{given rejection pattern|observcd gap sequence}.

Since the observed gap sequence on the main road is independent of
how drivers on the minor road accept and reject the gaps, the first term of
the right-hand side is not a function of T or o and can be dropped [or
maximum-likelihood-¢stimation purposes. The likelihood function can thus
be written as the product of Eqs. (2.3a):

Np

L{T, o) = n Pr{R(n}’A(n)}’

n=1

where Ny, is the number of drivers in the sample. After taking logarithms,
it reduces to

Na : -T Np T—R.
logL(T,o) = ¥ logm(ﬁ;—) + ¥ log(l)( - RJ), (2.3b)

n=1 4 i=1 3

4

where the subscript j denotes the rejected gap number within the data set
(irrespective of the driver) and N, and Ny are the numbers of accepted and
rejected gaps, respectively.

In order to simplify the hand calculations it is assumed that ¢ = 1 and
that only the data for the two first drivers in Table 2.1 are available. Equation
{2.3b) becomes

log L(T) = log {10 — T) + log ®(20 — T)
+ log®{T — 9) + log®{T —11). {2.3c)

The maximum of Eq. (2.3c) can be found by trial and error or by using a
Systemalic search procedure. By inspeclion one notes that

log L{T)« 0 if T<5 or T>14

because in these cases either the first or third term of(2.3¢) 1s a large negative
number. Therelore, we confine our attention to values of T between 5 and 14,
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The interval to which T belongs is successively reduced by evaluating
log L(T) at two interior points and retaining for further consideration only
a part of the interval that must necessarily contain a maximum.

The two points selected will be symmetrically located, 38.2%; and 61.8%
within the interval. The first two points are

T=5+(14—5) x 0382 = 8.44

and
T=35+(14 — 5) x 0.618 = 10.56. .

The log-likelihood values obtained from Eq. (2.3c)are log L(5) = —31.09,
log L{14) = —10.36, log L(8.44) = —6.56, and log L(10.56) = —241.

As can be seen from Fig. 2.1, the log-likelihood function must necessarily
reach a maximum between T = 8.44 and T = 14 and, consequently, the
left-hand end of the interval can be dropped from further consideration. In
future iterations, one will reject the end of the interval that lies to the outside
of the lowest of the two middle paints.

The next two middle points are obtained from the interval (8.44, 14)in the
same way:

T = 10.56 yields 1og L{10.56) = —2.415601

lag LIT}

| [ 1 |
9 T 11 13
1056

-
Fig. 2.1 Possible log-likelihood patterns.
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and
T=1I1.88 vields logL(11.88) = —3.707149.

The reader should notice that one of these points (T = 10.56) coincides with
a previous point and that, consequently, log L{T) did not have to be re-
calculated at that point. The scemingly awkward numbers 0.382 and 0.618
were selected because they always divide the interval in such a very convenient
way. Because of this property, the method is called the golden section method
[see Avriel (1976) for a more detailed description]. The golden section
reduces the length of the interval 61.8% with each function evaluation; this
means that after, say, eight more evaluations, the interval will be reduced to
1/48 ol its original size. Table 2.2 displays the intermediate results and the
maximum-likelihood estimate T =~ 10.58.

Tahle 2.2

Summary of Golden Scction Method Calculations

Left-cnd point Left-middle point  Righi-middle point Right-end point

Iteration
number T log L(T) T log L(T) T log L(T) T log L(T)
1 5 —31.09 844 —0.56 10.56 —241 14 —10.36
2 844 — 1056 —241 11.88 -3.71 14 —
3 4.44 — 975 =301 10.56 -24l [1.88 —
4 9.75 - 1056 —241 11.06 —2.60 11.88 —
5 9.75 — 1025 =251 10.36 —-2.41 11.06 —
6 10.25 - 1656 —2.41 10.75 —2.44 11.06
7 1123 — 10.44 —2.43 19.56 —2.41 11.06 —
8 10.44 — 10536 =24 10.63 -242 1075 —
9 10.94 — 10351 -—242 10.56 —241 10.63
10 1051 — 10.56 —2.415 10384 —24152 063

2.1.2  Data Structures and Corresponding Likelihood Functions

The previous example illustrated how a problem seemingly unrelated to
multiple choice (even the alternatives were hard to identify) could be cast
as a random utility model. Thus the reader should not be misled by the
terminology used in this book since sometimes problems that at first glance
do not seem related to discrete choice have the mathematical structure of a
MNP model.

In writing the likelihood function of a MNP problem, one needs to know
the procedurc that was foliowed to gather the data since the likelilood
function is the probability density of the data. In this section, three different
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data-gathering procedures are discussed: attribute-based sampling; choice-
based sampling; and random sampling with alternative ranking,

In the two first cases, the data consist of an observed choice and a vector
of attributes for each one of the data points. The data for the third case also
consist of a vector of attributes, but instead of an observed choice, one has a
ranking of the alternatives in order of attractiveness. This type of data is
sometimes gathered by means ol consumer surveys in marketing studies.

An attribute-based data set is defined as a set of observations that are
gathered by stratified sampling of choice makers from predetermined sub-
groups of the population with one or more similar attributes. The sampling
process within each stratum is completely random and is carried out without
knowing the choice of the sampled individuals beforehand. In the simplest
sampling method one does not divide the population into groups, and
abservations are directly obtained from the population as a whole. A set of
observations generated in such a way will be cailed a random sample. A
commonly used random-sampling process in many studies consists of
selecting telephone numbers from a telephorie directory and/or mailing
questionnaire forms to randomly selected individuals. The fundamental
characteristic, however, is that the choice of an individual must not affect
his belonging or not belonging to the sample.

For estimation purposes, the likelihood function of an attribute-based
data set and a random-sampled data set is the same. With the notation
introduced in Chapter 1, we have

N :
L(6) = ] Pr{A., = a,, and choice = €| 0}, (2.4)
n=1

which is the general likelihood function for all sampling processes. For
attribute-based and/or random samples, it is convenient to write Eq.(2.4) as

N
L(B) = H Pr(,,)(ﬂs a(n]) ) F.—l,.(a(n))3
n=1

where P(-,-) is the choice function and F (") represents the density function
of Ay, for the sampling mechanism used (random or stratified). Since F , (-)
is not a function of #, we can instead use for estimation purposes

N
log L(B) = 3, log P,,, (6,34, (2.5)
n=1
which coincides with the log-likelihood function introduced in Chapter 1
[see Eq. (1.22)].
A choice-based sample is a sample that is gathered by sampling from
strata of persons with the same choice. The choice of a choice-based observa-
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tion is thus known beforehand. A choice-based sample for a modal-split
problem can be obtained by “on-board” interview of transit riders and “road-
side™ questioning of motorists. Interviewing people in the showroom after
car purchases could generate a choice-based sample for a car-brand-selection
model.
The likelihood equation (2.4) is conveniently written in this case as
N
L(#) = [ Pr{nth choice in sample = o]0}

n=1

* Pr{A = a,|nth choice in sample = ¢, 8}

or
N
L#) = [] Pr{A = a,|nth choice in sample = Clny» 0}, (2.6)
=1
since by definition of choice-based sampling the nth choice in the sample
is cpy-
Equation (2.6) can be written in terms of the choice function by using
the conditional probability formula

L(O) = ﬁ P, (0,a,,) 3w
w=1 “ou T Pq.,;(g) ’
Yvhere {as in Chapter 1) P, (8} represents the marginal probability that an
individual sampled at random from the population selects alternative ¢,,, if
8 was the true parameter value. Since the marginal distribution of A is fixed
{independent of @) it can be omitted from the likelihood equation and one
can instead maximize

N N
log L(0) = ). log P, (8,2, — 2, log P, (6. {2.7a)

n=1 n=1
In most cases, calculaling P8 is a cumbersome task (P, (0) =
E,[P.,,(6,A]] as was discussed in Section 1.2) requiring knowledge of the
distribution of the attribute vector across the population, F(a), and the
calculation of a multiple integral; thus the maximurn-likelihood-estimation
method seems difficult to use. Manski and Lerman have developed a non-
maximum-likelihood-estimation method that has good statistical properties
and only mvolves calculation of the choice function [Manski and Lerman
(1977)]. They propose to select # by maximizing the following pseudo-

likelihood lunction:

N

10g Lp(o) = Z EM log Pc(,.,(es a(n))7 (27b)

n=1 Jewy
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where p. , and [ are constants representing, respectively, the fractions of
the population and sample selecting alternative cyy.

With the multinomial probit model, however, calculation of P, (8) is
sometimes as easy as evaluating a choice function and the maximum likeli-
hood method may still be used (Chapter 4 discusses the efficient prediction
methods that can be used with MNP). Furthermore, sinice the second term
on the right-hand side of Eq. (2.7a) can be calculated as

N I
"; log P, () = i; NP;(8), (2.7¢)
where [ is the number of alternatives and &, is the number of sample observa-
tions choosing alternative i, the extra computational effort involved in
calculating it may become negligible if, as is usually the case, N is much
larger than I.

In a random sample with ranked alternatives observations are sampled
independently of their choices and the data corresponding to an observation
1 consist of an attribute vector a,, and a ranking of the alternatives by order
of attractiveness. We shall write j(#) for the jth most attractive alternative
to the nth observation in the sample and 7, to the particular ordering
corresponding to the nth observation. In this case we can write, instead of
Eq. (2.5),

N
logL(#) = Y logPriR = o) 05 8 )
n=1
where R is a random variable denoting the I! possible orderings.
It is now shown that, for MNP models, PriR = 1'(,,)\9, a,} reduces to a
choice function for an equivalent MNP model. It can be written

Pr{Ui(u) > UZ(H) >z UI(")IB’ 3[")}, (288)

where, for brevity, the dependence of the Us on ¢ and a, is not explicitly
represented, and Uy, represents the j(n) component of the utility vector
for the nth individual in the sample.

Letting, Z, be a vector with the following I 4+ 1 components,

Zw1 =0 (2.9a)
and
Zi=Ujn— Ujmrmp 1= 2.3 ..., 6L (2.9b)
Eq. (2.8a) can be written
Pri{Zoy > Zomi Vi # 1|0, a4}, (2.8b)‘

2.
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wbich is the choice function for alternative I of a random utility model
with .perceived attractiveness vector given by Z, = (Zuy1, Zuyas - - - » Zoot)-
Since for an MNP model U is MVN distributed with mean V and co-
variance matrix L., and Egs. (2.9) define Z,,, as a linear transformation of
U, Z,, will also be MV N distributed and Eq. (2.8b) defincs a MINP model too
Equations (2.9) can be written in matrix form .

Z(n) = U ° A[n)a

where Z,,, and U are row vectors and A, is a square I x [ matrix with
elements &, defined as

St = O, k=1,...,1,
O = 1, il k=In),
B = — 1, if k=1-—1(n),
S = 0, otherwise.

T{, lor instance, observation » ranks allernative 1 over 2, 2 over 3, and so
on, /(n) = I, and for that observation

0 -1 0 0 0 0

0 1 -1 0 0 0

0 0 1-1 VI
Aw=1|0 0 0 1 0 0
0 0 0 0 -~ 1 —1

0 0 0 0 - 0 1

As dl_scussed in Appendix A, the mean vector and covariance matrix of Z
are given by "

E(Z(u)) = V(B,al")) " A (2.10a)
and

COV(Z(")) = A;l,-,) - 26(0, a(,,)) " A(”), (210b)
where the suPerscript T denotes the vector transposition operalion.
The log-likelihood function can thus be written

N

log L(8) = Y log P,(0,a,,n), (2.11)

n=1

Where Pl(a,_a, n) !s the choice [unction for the first alternative of a MNP mode!
with a specification varying with n according to Eqs. (2.10).
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These three examples illustrate two related facts:

(1) The MNP model is robust since, even for different data-gatbering
procedures, the likelihood function basically reduces to a sum of logarithms

of MNP choice functions. _ . _
(2) Ifan efficient way of evaluating MNP choice [unctions 1s [ound the

three problems discussed in this section and probably others will be tractable.

Before presenting evaluation methods of Py{#,a) for MNP models, we
briefly review the components of a maximum-likelihood-estimation program.

21.3 Components of a Calibration Program

Since the calculations involved in finding maximum-likelihood estimatgs
are very involved, as can be gathered from the very sirr_lple example. in
Section 2.1.1, they should be programmed for automatic computation.
Reference to the example indicates that in order to calibrate the MNP mocliel,
we should have the capability to calculate the choice probability function
Pi(6,a),

P{0,a) = Pr{U,(0,a) > max [U;{0,a)]|0,a}. (2.12)
J#FI

Since for the MNP model the joint distribution of U is en@irely characterized
by its mean V(f,a) and covariance matrix Z:(8,a) (it 1s MVN), one can
calculate Eq. (2.12) in two steps:

(a) calculate V(#,a)and E.(8,a);
{b) calculate
pi(V,L) = Pr{U; > max (U | E(U) = V, cov(U) = Z}. (2.13)
J#i

The function pi{(V,E;) denotes the probability that the_ith component
of a MVN variate with mean V and covariance matrix I, is the largest. It
will be called the MNP function and will be used often from now on. It
should perhaps be noted that pi(V,Z)} and P,(0,a) are related by a change
of variable,

pi{¥(0.2),L(0,2)) = P(6,a),

and that therefore MNP choice functions can be calculated if MNB functions
can be calculated. For the binary example in Section 2.1.1, choice proba-
bilities can be easily found because, as was shown in ('Jha.pter_ 1, the MNP
function pi(V,X;) reduces to a cumulative norma_l dlstnbutlon_ fur}ctlon,
however, for three and more alternatives, evaluatmg pi(V, X} is difficult.

L
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The speed with which a computer can calculate p,(V, X, is crucial for the
feasibility of MNP estimation. Modern computers, together with the fast
numerical methods described in Section 2.2, have made MNP estimation
feasible for problems ol moderate size. With the capability of calculating
choice probabilities, the structure of a MNP estimation program is straight-
forward. It is convenient to use a subroutine to calculate the log-likelihood
function [as given by anyone of Egs. (2.5), (2.7), or {(2.11}]. The inputs to it
are a parameter vector value 6 and the data set, i, a,, and Cpy OT 7y, for
n=1,..., N.Forinstance, to obtain the log-likelihood of a random sample,
one calculates Vi, and X, for each data point with the known specification
of the model [V, =V(f,a,,) and L, = L:(6,a,,)], calls another sub-
routine that calculates the MNP function to derive the choice prebability,
takes logarithms, and adds the result for every data point to yield log L(#).

As was seen in the example, for a particular estimation problem with a
given data set, the log-likelihood function can be evaluated at different values
of 9 (the data are fixed and known) until the vaiue of @ that maximizes it is
found. It is thus convenient to have another subroutine level which will
evaluate log L(#) as many times as needed to search [or the maximum of
log L{8) in a systematic way. Such a subroutine will usually require an initial
value for ¢ and some definition of the boundaries of the search domain.

For a problem with just one parameter a golden section search (see
Section 2.1.1) could be used. In such a case the initial interval—(5,14) in
the example—is the search domain that is provided as an input. Problems
with more unknown parameters require more-sophisticated search tech-
niques but the basic structure of the estimation program is the same.

Figure 2.2 contains a simplified block diagram of a hypothetical, random
sample, estimation program. The rest of this chapter discusses the technical
aspects of choice probability calculations, likelihood [unction evaluation,
model specification, and search for the maximum of the likelihood function.

2.2 Choice Probability Calculation Methods

As discussed by Daganzo et al. (1977a,b) and Bouthelier (1978), the
number of times the choice probability must be calculated in an estimation
problem is quite large. It ranges from 1000 times for a small problem with 100
data points, one unknown parameter, and converging rapidly to 100,000
for a moderate size problem with 1000 data points, five unknown parameters,
and converging less easily. This section discusses in some detail ways of
evaluating the MNP function since the speed and accuracy of the calculations
are very important.
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MAIN PROGRAM
Reads the data and perforins the
search by evalualing the
log-likelihood function at different
points. 11 also prints the output.

LOG-LIKELTHOOD EVALUATION SUBROUTINE
INPUT: 8, a4, i = L, .. ., N) QUTPUT: log L(8)

Considers all the data points one by one. For each onc ol these,

it calculates the logarithm of the probability of choice (8, ¢, and
a,, are given). First it calculales ¥V and Ty with the specification

subroutine, and then il uscs these values to calculate

Py, With Lhe MNP [unction subroutine.

The values of log p, , arc added up to yicld log L{0)

SPECIFICATION SUBROUTINE

MNP FUNCTION SUBROUTINE
INPUT: a,,, # OUTPUT: V). sy

INPUT: ¢, Vi Zien OUTPUT: p.,,,

Fig. 2.2 Block diagram ofa MNP calibration program.

Three different approaches have been proposed in the literature to calcu-
late p{V,E). In approximate chronological order, they are
(1) numerical integration [Hausman and Wise (1978), Andrews and

Langdon (1976)];
(2) Monte Carlo simulation [Lerman and Manski (1977)]; and
(3) numerical approximation [ Daganzo et al. (1977a,b), and Bouthelier

(1978)].

Each one of these methods has advantages and disadvantages, which are
reviewed below.

2.2.1 Numerical Integration

For the multinomial probit model, Eq. (2.13) can be expressed as
V.5 = {, . #alV,E)du, (2.14)

where ¢(:| V, T) represents the probability density function ofa MVN random
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variable (U) with mean V and covariance matrix £; and (i) represents the
set of values ol U for which U; > max;. (U;).
In an expanded notation, one has

P'-(V, ZE) - J:r: < J’:r2<u,- o J::fjo:: o nl:“'<"f [{27[)!'25[]7 e
~exp[ 3w — V)E u — V) du, - du,, (2.15)

which indicates that to obtain the choice probability one must solve a
multiple integral of dimension I. Since the computational effort increases
exponentially with the dimensionality of the integral, it is more convenient
to express the choice probability as a function of the difference in utilities
which as is shown below reduces the dimensionality of the integral by one?

Let Z be a veclor of 7 — 1 components, defined as the difference between
the components of U (other than U,) and U,,

Z;=Up—U, with j=j if j<ii j=j+1 i j>i
These equations can be alternatively written in matrix form as
Z=U"-A
with
1 2 3 i—1 P I=27-1
1( 1 0 0 0 0 - 0 0]
20 10 ¢ 0 - 0 0
3 0 0 1 0 0 0 0
A=i—-1 0 0 0 1 0 0
il -1 -1 =1 -1 -1 -1 -1
I—=1f 0 0 0 - 0 0 - 1 0
i o 0 0o - 0 0 - 0 1|

Tf}is tirear transformation defines Z as another MVN random variable
with mean and covariance given by

Z=VA and X, = A?'EgA,
E(Z_,'): VJ—V! j=1,...,1—]_, (216&)
and

i

COV(Z;,Z,) = cov(Uy — Uy, Uy — U) = 0} — 0k — 6 + o}, (2.16b)
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where V} is the jth element of V and 0% is the (j, k)th element of .. The
choice probability can be found by calculating
PV, B} =Pr(U; > UiV # i|V,Z} = Pri{Z; < 0;Vj|Z, 2z},
which, if £, has full rank, can be expressed ast
[ [ [en ] P expl —be — )% e — 2T,

(2.17)
which is an I — | dimensional integral giving the value of the cumulative
distribution function of Z, at z = (. We, thus, write it

PV, Es) = (0] Z,E,), (2.18)

where Z and I, are obtained from Egs. (2.16) and 0 is an (I — 1)-dimensional
vector of zeros.

Calculating Eq. (2.18) is still difficuit for problems with three or more
alternatives and further simplifications are desired. A change of variable
in Eq. (2.17) can reduce the dimensionality of the multiple integral by yet
another unit. Consider the Cholesky factorization* of £ *:

;! =LDL",

where L is a lower triangular square matrix of dimension ({ — 1) x (I — 1)
with unit elements on the main diagonal and I} is a positive diagonal matrix.
It immediately follows that £; ' can also be expressed as

;' = L/D/DL" = (L/D)/DL)’,
where V"ﬁ denotes a diagonal matrix with diagonal entries given by the
positive square roots of the elements of D; and letting C = L./D:
' ;1 =CCT, (2.19)

where C is (by construction) lower triangular with positive diagonal entries.
We now perform the following change of variable in Eq. (2.17):

w=(z — Z)C, (2.20)

! For makrices without a full rank, one reduces the dimensionality of Z and E; according
to some simple rules [see Rao (1963), for instance] until the resulting covariance matrix is
nonsingular, The choice probability caleulations are thus greatly simplified.

2 As discussed in Appendix B, a covariance matrix with full rank is positive deflinite and
symmetric; accordingly, its inverse can be expressed as a product of three matrices:

T;!=LDLT,

where D is a diagonal matrix with positive diagonal efements and L a lower triangular maltrix
with ones on the main diagonal: LT is the transpose of L.
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which enables us to write the domain of integration of Eq. (2.17) in terms
of w as

z=Z+wC'<0. (2.21)

Sinc_e C~ ' is the inverse of a lower triangular matrix with positive diagonal
entries, it 1s also lower triangular with positive diagonal entries. Denoting
the elements of C~' by ¢;; ' one can write Eq. (2.21) as

-1
Zi+ Y owegl<0, j=1...,1-1,
i~
or as
_ I—-1
ta=ij§'s—(Zj+ Y w,-c,-}‘), ji=1....,1—1;
i=i+1

and since ¢;;' > 0, the domain of integration becomes

-1
7 -1 —1
W, < (Zj-i- Z wiC )/('J-j.
i=j+1

This can be written in expanded form as
Wi € —Z, yfer o= Wy,
Wioo < —{(Zra +woorly poaler s oo = Wisalw o),
. (2.22)

Wy —(Zy + w7ty o waesert = Wil s wa).

The integrand of Eq. (2.17) becomes

1-1
2m) Y2 exp{—dwwTldw = [] d(w)dw,.

i=1

Tp see this, replace £, ! by CC"in Eq. (2.17). The exponent on the left-hand
side of this expression lollows immediately from Eq. (2.20). The coefficient
|Z,| ' equals |C|, which is the determinant of the Jacobian of the trans-
formation defined by Eq. (2.20):

Ewy - wp_y) _
—— 1 =C|=|E 172,
ez zr-y) ‘ | | Zl
Since
T -
dz = dw LT
oz zr-y)
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the determinant of £, drops out of the integrand of Eq. (2.17), which then
reduces to the abovementioned form.?
The MNP lunction can, thus, be expressed as

Wroy Wr-alwe-1)

PAV.Z) = | vy _2)

Wr_1=—m

dlwyr-y) J:

ry_2=—a

Wilwr—q1...wWa2
[ g,
H

Vi=—o

or, alter integrating the last integral,

Wi, Walwr—1...w3)
pilV, L) = J:‘_I_F_w' : -.I:\'z:—m DWW (wy_; - - wa))
-1
- ] plwddwy - - dwy_y, (2.23)
i=2

where the functions W(- - -} are given by Egs. (2.22) and the multiple integral
is of dimension 1 — 2.

To evaluate Eq. (2.23) one must calculate Z and X, with Egs. (2.16),
C~! with standard numerical techniques, the functions W{- - ) with Egs.
{2.22} and the integral with numerical techniques.

This approach is particularly useful for problems with three alternatives,
since in that case Eq. (2.23) is a line integral that can be solved with just a
few evaluations of the integrand by using, say, Simpson’s rule. Andrews and
Langdon (1976) suggested this approach for modal-split problems involving
three transportation modes but did not develop a calibration method.
Hansman and Wise (1978) seem to have been the first researchers to calibrate
a MNP model; they used & numerical-integration technique similar to this
one.

For a three-alternative problem an evaluation of the integrand necessi-
tates one calculation of ¢(-) and one calculation of @(-). This can be done
numerically with [see Abramowitz and Stegun (1965)]

$(x) = — exp(—x*/2)

i
N

3 The reduced form of the integrand can also be derived by interpreting Eqg. (2.20) as a lincar
transformation of MVN random variables. As a result ol the transformation, the random vari-
able corresponding to w is a set ol (I — 1) independent and identically distributed standard
normal variables with joinl density function given by []/Z d{w,).
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and
O} ~ U= ({[lar + ay)t + az ]t + aq bt + asdp(x) il x=0
’ 1 - (D(\l) if x<0,
where

f={(1+02316419x)"", a4 = 1.781477937,
a, — 1330274429, ay = —0.356563782,
a, = — 1821255978, as = 0.319381530.

Example Calculate the probabilities of cheice for the following data:
2 1

Y =(2223 and T-=|0 2 1]
I 3

We start with p,. Substituting these values into Eq. (2.16), we have Z =

0, Dand =% 3]
1 3 -2
rl=—
278 [—2 4}
which can be lactored as

The inverse of Z; is
zﬂ:l 3 -2 [ o612 01[0.612 —0.407
2 781 -2 4| | 0407 0.576 0 0576

and, censequently, yields

0612 0 L, e o
C"[—OAO‘/ 0.576} and € ‘[1.15 1.74]'

Note at this point that
(CH 'C'=%,
and that C ™! can be directly obtained [rom ;. -
The limits of integration are obtained from Eq. (2.22):
W, = —1/1.74 = —0.575,
W) = —w,1.15/1.63 = —0.706w,,
and Fq. (2.23) becomes

—-0.575

(V.29 = | B(w)D(— 0.706w) .

— 0
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This equat.ion can be solved numerically by using Simpson’s rule. We
evalll.la.te the integrand, between w = —3.575 and w= —0.575 [H(w) is
negligible for w < —3.5], 11 times at points equally spaced:

w; = —3.575 4+ 0.3
The approximate value of the integral is given by

py = (03/3)(fo + 4y + 202 + 4fs + - -+ 45 + J10),

where f; is the value of the integrand for w = w;.
The calculations are summarized in Table 2.3 and the result is p; = 0.2204.
The reader can check that repeating the process for p, and p; one gets

p; = 0.22 and py = 0.56;

and that, indeed

pr+p.+ps=1 A

Table 2.3

Numerical Integration Example Calculations

i w; diw;) O - 0.706w;) I

0 —13575 0.001 0.994

1 -3.275 0.002 (3.990 0.002
2 —2973 0.004 0.982 0.004
3 —2.675 0.011 0.971 0.011
4 —2.375 0.024 0.953 0.023
3 —2.075 0.046 0.929 0.043
6 —1.775 0.083 0.895 0.074
7 —1.475 0.134 0.851 0.114
8 —L175 0.200 0.797 0.159
9 —0.875 0.272 0.732 0.199

10

—0.575 0.338 0.658 0.222

* Probability = 2.204(0.3)/3 = 0.2204.

'This example illustrates the type of calculations that are necessary 10
to evaluate the choice probability of a three-alternative MNP model numeri-
cally. l\_Iamely, alter obtaining the limit of integration and the argument of
®(-} within the integrand one has to calculate ¢(-) and ®{-) several times
(ten in our example).*

4 .

In addlr._lon, one must remember that Z and C™' must be calculated [rom ¥ and X, prior
to thf: numerical evaluation of Lhe integral: however, the computational effort involved in doing
that is relatively small.
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For problems with more than three alternatives, the approach seems less
promising because one must approximate a multiple integral, which requires
more evaluations of a more complex integrand.

Since the probability of choice must be evaluated several thousand times
even for smell problems it seems that the direct numerical approach can only
be used effectively with rather small three-alternalive problems.

Because of this, some researchers have investigated alternative ap-
proaches to evaluate pdV,L;) approximately. Two approaches that seem
promising for different applications are reviewed next.

222 Monte Carle Simulaiivn Methad

This method has been suggested by Lerman and Manski (1977); it con-
sists in evaluating the MNP function pAV.E;) by performing experiments
with random numbers. For each experiment, one generates a MVN(V,Z;)
random vector U using a string of pseudorandom numbers generated by
a computer, looks at the components of U, and records a success if the
ith component is the largest. If the experiment is repeated many times, the
fraction of successes will approach the choice probability p(V,E). The
method is, basically, equivalent to estimating the fraction of persons who
choose alternative i in a segment of the population with constant V and Z;
by observing the choices of many individuals in the subgroup.

In order to generate a MVN random variable with mean V and co-
variance X, one can proceed as follows [see Fishman (1973), for examplel;
express I as

T, = C.CL,

where, if desired, C; may be a lower triangular matrix with positive diagonal
elements.
Generate I independent standard normal variates {subroutines that do

s0 are standard in most computer installations) vy, va, ..., Vs and calculate
Ula [ UJ by
U=vCI+V

We note that U is MVN, since it is a linear combination of independent
normal variables, and that, as expected

E(U)=V+EWCI =V
and
cov(U) = C cov(v) CE =C;-1- CT = CECE =L,

where in the last expression, I is the identity matrix.
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Example Let us perform three experiments for the same problem in
Scetion 2.2.1 with

20 1
V=023 and ;=0 2 1
11 3
Since
i 2 0 0|12 0 1 I
L.=--|0 2 0]10 2 1 ]—,
\/—2_1 1 2(10 0 2 \/E
we can use

Ul = 2 + \;6 Via
U2 = 2 + \,'/E \’3,
Us=3+v/J/2+ va/N2 2055
and if from a normal random variate generator we have obtained the
number string 0.11, 1.23, —0.50, 0.73, 0.65, 0.7, 1.51, —098, 032,..., we
can perform experiments by using three of these numbers at a time. The
first three experiments yield
observation 1 U = (2.15,3.74,3.24), and the choice is i = 2;
observation 2 U =(3.03,292,494), and i = 3;
observation 3 U =(414,101,3.83),and i = L.
" Afiter these three experiments, the estimated probabilities are p, = i,

p, =1 and p; = %, but more experiments would result in values closer to
the exact values: p, = 0.22, p, = 0.22, and p; = 0.56. W

Since each experiment can be regarded as a Bernoulli trial with proba-
bility of success p;, the total number of successes alter N trials, N;, is
binomially distributed. The mean is E(N;) = Np; and the variance var(;) =
Np{l — p)). For large values of N, one can use the normal approximation
to the binomial and be quite sure that

IN; — Npd < 2[Npi(1 — p]'"

Consequently, the relative error in estimating p; is

1 p\!72 N — N2
c< 2| —— 2 .
fn(5) =)

This expression indicates that small probabilities (p; — 0) require larger
values of N since the relative error is proportional to the square root of the

N.
(N) = i
&(N) = 100|7 — p;
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reciprocal of the number of successes:
g{N) = (200//N )Y forsmall ps.

If in the example we admitted a 10%; relative error in our calculation of
py, we would have to repeat the experiment until we obtained 20% = 400
successes, which, because p; &~ 0.22, would require approximately 1800
experiments. The simulation approach thus scems unsuitable for calibration
purposes because it would be very costly.

In addition, since to calculate p; one normally performs experiments
until some prescribed number of successes is achieved [or a similar stopping
rule is used, e.g., &(N) < 0.17, the number of experiments is itsell a random
variable and this, as pointed out by Danganzo, et al. (1977b), introduces a
small bias in the calculated values. This bias, however, is rather small [as
suggested by the experiment in Daganzo et al. (1977b)] and becomes smaller
with increased values of N; and N.

The last drawback of calibration with simulation is that if in the initial
stage of the search process the current value of @ is very different from the
true value #,, some of the observations in the data set may have such small
probabilities that they may be impossible to calculate. Indeed, this happens
since with a small synthetic data set with 50 observations, Daganzo et al.
(1977b) found that, for three of the observations at an arbitrary starting
point, N; was equal to zero after 10,000 experiments. On the other hand, in
the last stage of the process, near the optimum, one needs high accuracy to
discriminate between values of @ with similar log L(§) and this cannot be
done with Monte Carlo simulation. Of course, it can be properly argued that
if the likelihood function is very flat, the estimate of 8, @ is not very reliable
(see Chapter 3), and one is not interested in determining it accurately anyway.

Although Monte Carlo simulation has some undesirable characteristics
that prevent its use in calibrating MNP models, the technique is very useful
for prediction purposes. It will be seen in Chapter 4 that when one has to
evaluate the fraction of the population selecting an alternative, i.e., the
expected choice probability P;(#) for a user sampled at random [rom the
population, one can use the Monte Carlo method since in that case one can
easily afford a large number of replications. Monte Carlo simulation is, in
parlicular, a very convenient way to obtain confidence and prediction in-
tervals for the forecasts (see Chapter 5).

2.2.3 Approximation Method

This particular approach is based on formulas [Clark (1961)] that ap-
proximate p; very quickly for a reasonably large number of alternatives.
The approach was suggested for an MNP route-choice prediction problem
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by Daganzo and Sheffi (1977) and subsequently an efficient estimation
method was developed by Daganzo et al. (1977a). Further discussions of the
method appear in Daganzo et al. (1977b) and Bouthelier (1978). Bouthelier’s
dissertation (1978} is particularly interesting since, in addition to pioneering
several aspects of this approach, it summarizes the relevant information in
previous publications.

Clark’s Formulas
Assume that Q,, Q,, and Q, are three MVN distributed random variables
with known mean vector m = (i, m,,n;) and covariance matrix

2 2 2
g] Oy 0i3

_| 2 2 2
Lo=|03, 03 Oia
2 2 2

031 O3z 03

Let (), be the random variable taking the greatest value of &, and Q;,
Q, = max{Q,;Q,}. In connection with a stochastic network_scheduling
problem Clark (1961) calculated the first four moments of Q, and the
covariance of {2, and Q, as a function of m and Zg. The formulas for the
first two moments of 3, (the third and fourth moments will not be used in
MNP calculations) and the covariance of (3, and Q, are

Ty = ity + (i — ) Do) + ag(ax), (2.24a)
Fy = m3 + 0% + (n} + 07 —m3 — 63)®(0) + (my + myad(o),  (2.24b)
5% = fiiy — M3, (2.240)
and
&35 = 033 + (a15 — 0Z5)0(0), (2.24d)
where
a=[(6} + 03 — 207,)]'1? and o= (m, — my/a.

In these formulas, i, 1., 63, and &35 Tepresent, respectively, the mean,
second absolute moment and variance of Q,, and the covariance ol Q, and
Q.

If, as suggested by Clark, one approximates {Q,, Q;} by a bivariate
normal distribution with mean vector and covariance matrix given by Eqs.
{2.24), one can apply Egs. (2.24a—) again to 192, Q.} to obtain the mean
and variance of Q, = max{Q);, Q;} = max{Q,,Q,,Q;].

As a matter of [act, the formulas can be applied recursively to a set of
variables Q,, ..., Q, to obtain the approximate mean and variance of the
maximum &,
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At the (i — 1) step, one calculates
=4 (0 — m)D(ey) + ap(e),
=m}+ a? +(Wioy + 61—y — i — o)) Dle) + (-, + m)adle),

R =

=,

g2 =M, — m?,

7y =oh+ @, — o)) for j=itLi+2 ..k
and

7 =a2 for j=i+1,i+2,...,k
with

a; = (& + o =267, )7 and %= (M — ny)/a.

We nole that the ith step requires one evaluation of ¢(-) and @(-), the
calculation of /;, fii;, and (k — 7) variance or covariance calculations.

Since it takes k — 1 sleps to calculate the mean and variance of O, the
total number of calcutations consists of

(1} &k — I evaluations of ¢(-) and ®(-),
(2) 2(k — 1) evaluations of /it and /i, and
{3) k(k — 1);2 evaluations of variances and covariances.

H can be seen that for large values of k the number of calculations increases
with the square of k. However, since a single calculation takes a very small
amount of compuler lime, one can calculate M, and &, efficiently for a
substantial number of alternatives.

Application to the MNP Function
The choice probability p(V, Z;) can be written as

piV. )= Pl‘{U,— > max (U] V,ZE}, (2.25a)
e ’

or using the same transformation as in Section 2.2.1 as
piV,Z.) = Pr{ max (Z;) < 0|Z, ZZ}. {2.25b)
j=1....0-1

Using Z,_, = max;_y. ... -1lZ;), a~nd letting fi,_, and &7_, be the ap-
Proximate mean and variance of Z,_; that one calculates with Clark’s
recursive formulas, one can approximate Z,_; by a normal random variable
with the same mean and variance, and p; by

p(V. E:) = O(— i -1/G1-1) (2.26)

The effort involved in evaluating p; is approximately the same as per-
lorming I — 2 steps of Clark’s recursive technique. For a problem with three
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alternatives we need

(1) one calculation of ¢(-),

(2) two calculations ol O(-),

(3} two evaluations of 7 and /, and

(4) one evaluation ol a variance or covariance.

These are trivial calculations with a computer and, as will be seen with
the example below, much less cumbersome than those needed for the
numerical-integration method.

It should be noted at this point that one can alternatively find the choice
probability of, say, the last alternative, p;, by operating with Clark’s method
directly on V and Z; to find

mi_ =E [rr_laf (U,-)],
J(

i, = var|:max(U )j|

j<I

5, =cov |:max (UL U,],

J<i

and

V — mi_
V.E)=0| — 5 —: . (2.27)
piV.E) ((‘TF + 670, — 2871, )M
The computational requirements of the first method are less than those
ol Eq. (2.27) since Eq. (2.26) requires fewer covariance calculations, and
the calculation of Z and I, can be done off line.
These two methods are now applied to the example of Section 2.2.1.

Example We evaluate p, for an MNP model with ¥ = (2,2,3) and -

X =

S

01
2 1)
1 3

—_ O

As was seen in Section 2.2.1, Z = (0, 1) and £, = [3 3]-
Clark’s formulas, Eqs. (2.24a—c), yield
a=1732, o = —0.577,
=1 — O(—0577) + L.732p(—0.577) = 1.302,
T, = 4 + 1.732p(— 0.577) = 4.585,
2-2800 and &, = 1.700.

Q=i ""‘l
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Equation (2.26) gives p, ~ ®©(—1.302/1.700) = 0.222.

Note that this value of p, is very close to the one calculated with the
Integration method but that the computational effort is drastically reduced.

In order to apply Eq. (2.27), it is convenient to rearrange the elements
of V and X; so that the alternative under consideration is the last one.
Such a permutation yields

31 1
Y=(322 and L.=|1 2 0]
1 0 2

Naturally, one will now calculate p, instead of p,. The involved calcula-
tions are

a=1.173 and a = 0.577,
E(0,) =2+ ®0.577) + 1.73 - ¢(0.577) = 3.30,
E(T3) = 6 + 6D(0.577) + 5 1.73 - $(0.577) = 13.23,
var(ﬁg) = 2734,
cov(U,,Uy) = (0577) 0.72,

Py = G[(2 — 3.3)/(234 + 2 — 1492 =d(—1.3/1.7)=0222. M

Accuraey amd Efficiency of the Method

The computer central processing unit (CPU) time of the approximation
method 1s approximately given by

ttme = (I — 2)(1 + 3),

where [ is the number of alternatives and « is a parameter that depends on
the computer installation. On an IBM 370 model 168 computer, the value
of o was found to be 10~ * sec.

Thus, for a problem with five alternatives, time = 24 x 10~ % sec, and
a calibration execution requiring 10° MNP lunction evaluations would take
approximately four minutes of CPU time. The approximation method thus
15 computationally attractive even for problems with more than three
alternaltives.

Daganzo et al. (1977b), Bouthelier (1978), and Albright et al. (1977) have
all explored the accuracy of the approximation method. Daganzo et al.
and Bouthelier looked at the effect of approximating U, I 3, etc. by normal
variates. They looked at Lhe exact and approximated cumulative distribution
lunctions of U; (for different values of j and independent Us) and concluded
that the approximation is satisfaclory except, perhaps, in cases where vari-




56 2  Maximum-Likelihood Estimation: Computational Aspects

1.0

2 3

Fig. 2.3 Accuracy of Clark’s approximation formulas. Case I: cumulative distribution
function for the maximum of several independent standard normal random variables. Straight
line: true; dashed line: approximation. [Source: Daganzo ef al. (1977b).]

ables have very diflerent variances and similar means. Figures 2.3 and 2.4
display some of the results in the abovementioned publications. It was also
concluded by Daganzo et al. that the existance of positive correlations tends
to enhance the results and that problems with few alternatives are more
accurately approximated. In addition to this analytical evidence, Albright
et al. (1977) have verified the accuracy of the approximation method with a
series of Monte Carlo simulation experiments.

Although much emphasis has been placed on accuracy, it should be
remembered that, whether or not the approximation method closely repro-
duces the MNP probabilities, it could be, to a certain extent, irrelevant;
for if

i
0<p(V,E)< 1 and Y pVE)= 1,
i=1
the approximation method would satisfy Egs. (1.5a) and (1.5b) and could be
regarded as a discrete-choice model in its own right. Although more evidence
is needed in this respect, Daganzo et al. (1977a) found that for a problem
with ten alternatives » 2, p; = 1.05 and that the result was more or less
independent of the order in which the alternatives were stacked for the
recursive calculations.
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m=0,ma=5

mg =0, mo=2
m| =2, rn2=O
my =5, mp=0

>error<0.0004

(b)

Fig. 2.4 Accuracy of Clark’s approximation formulas. Case IT: cumulative distribution
[uncton for the maximum of (wo independent normal variables with different means (g, m,)

and variances (¢, ¢3). Straight linc: truc: dashed linc: approximation. [Source: Daganzo
el al. (1977b).]

At present, the approximation approach scems (o be the MNP function
evalualion method that is best suited to calibrate models since for most
applications it seems reasonably accurate and is the fastest of the three.
Anexception would be a three-alternative problem with negative correlations
and/or very large variance differentials where the relatively large diflerences
that would arise between the approximation and exact MNP probabilities
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could not be tolerated. Under these conditions, it would be betler to use
the more exact numerical-integration method. Note also that .for. two-
alternative problems the integration and approximation methods coincide.

2.3 Likelihood Evaluation

Evaluation of the likelihood function generally involves calculation of
a choice probability for each one of the observations in the data set, whic‘h
must, of course, be done with one of the evaluation methods described in
the previous section. _

Evaluation of the likelihood function thus mvolves calculation of V
and I, for each one of the observations in the data set by entering into the
specification of the model

lOg pl [E(Z(u,h COV(Z‘("))]

and calculating log p,,, (V:,5(6), Lg,(0)). _ .

The sum of these quantities gives the log-likelihood function for attribute-
based samples [ Eq. (2.5)]. ‘

Choice-based samples require, in addition, calculation of the fraction
of the population that would select each alternative if the true paramqter
valug was 0 [ see Eq. (2.7a) and the related discussion regarding the calculation
of such [ractions—P,(8)]. Alternatively, it is possible to use the pseu(;lo-
likelihood function given by Eq. (2.7b), which does not require calculation
of P;{®. The selection of cither one of these equations is dict_ated by the
availability of information about the distribution of the attribute vector
and the alternatives across the population.

In a random sample with ranked alternatives, one must calcu_late E(Zy)
and cov(Z,,) instead of V and I, for each ob.serva.tlon. This is done by
calculating A,y and entering it in Egs. (2.10). With this done, one calculates

V(n)(e) = V(Bs a(n))!
E-ﬁ(rr)(e) = Eﬁ(ea a(n))’

for each one of the observations. .
The rest of this section applies only to attribute-based sgmples but.the
discussion is easy to generalize for other forms of the log-likelihood function.

2.3.1  Model Specification

In order to calculate the log-likelihood lunction for a given 8, it_ is
necessary to know the attribute vector a,, and choice ¢,, of every observation
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in the sample, and how Vi and I, depend on (hese (i.e., the data and the
specification ol the MNP model). A convenient way ol handling this is the
scheme depicted in Fig. 2.2, where the likelihood evaluation routine calls
successively, for each data point, a specification routine that calculates
Vi and Kz, from 0 and ay,), and the MNP lunction evaluvation routine.

Although most of the comments in this section would apply to any
computer program, the specific input details correspond to a prototype
FORTRAN program that has been developed by several researchers and the
author [Daganzo et al. (1977a,b) and Daganzo and Schoenleld (1978)]. In
the aforementioned program, the specification routine must be provided by
the user following some simple guidelines. Namely, given a choice ¢, (or a
ranking 1;,,), an altribute vector ay,, and a value of the parameter 6, the sub-
routine must return V,,, and X The program will automatically call this
and the MNP function evaluation subroutines once for each observation
and will aggregate the results to give log L(8).

In specifying ¥(8, a) and Z:(0, a) the user must make sure that the matrix
L. remains positive definite for all the feasible values of 8, since otherwise I,
would not represent a covariance matrix and the program would not return
meaningful values.> This can be done in two ways:

(a) expressing Y6, a) as the product of a matrix and its Lranspose,
2{;'(01 a) = Cé(g) a) Cg‘(ev a)!

(b) expressing ¥;(6,a) as a function of 0 and a directly, and placing
bounds on each one of the parameters 8, 0,,;, <0 < 0,,., to ensure (hat
L:(0, a) is positive definite.

Each method has its proper application place. Method (a) can always be
applied but requires a matrix multiplication for each evaluation of Z:, and
since the matrix C:(8,a) is not a covariance matrix, it is difficult to interpret
and specify reasonably. Method (b) is more intuitive to specify but for
problems with several parameters it is hard to find the dormain of @ that makes
L:(0,2) positive definite. Sheff (1978a) and Sheffi and Daganzo (1978b)
discuss ways of specifying MNP models by using networks as graphical aids.

The input to a MNP computer program will, thus, typically involve
Several things:

{1) a control card giving the number of observations, alternatives,
barameters, attributes, and other information, such as the maximum allow-
able number ol iterations, and a convergence criterion;

3 Although posilive-semidelinite matrices arc covariance matrices oo, Lthe statistical TEgU-
larity condilions imposed on the specification of 1 MNP model in Chapter 3 require that E,
be positive definite (see condition 3 in Section 3.2.2).
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(2) a set of cards (one for each parameter) giving
6., an initial value of 8, and I

(3) the data sct (onc card per observation) giving the attribute vector
and an observed choice;

(4) ecither a FORTRAN subroutine giving the specification of V(6,a) and
L:(0.a), or a set of constants that would be used in an internally defined
subroutine.

The computer program will then evaluate lbg L(6) at the initial point
and, using a systematic search technique (discussed in the following section),
move to different points § until a value 0 that maximizes the likelihood is
found.

2.3.2 Computer Input Preparation

As an example consider a three-alternative modal-split problem in which
the attractivenss of mode i is proportional to the negative of the travel time:

V,=—-0,44, V, = —0,4,, V,=—0,4;,

where A, represents the travel time by mode i and 0, is a generic parameter
representing the value of travel time in unattractiveness units.

Assumning that modes 1 and 2 are two public-transportation modes (say,
bus and streetcar) and that mode 3 is the private automobile, it seems
reasonable to expect modes 1 and 2 to share some neglected attributes that
would not particularly affect mode 3, e.g., public-transportation discomtort
and lack of privacy. It then makes sense to specily the covariance matrix
Z (0, A) as

1 8, 0
L0,A=|6, 1 0|,
0o 0 1

where 0, represents the correlation of U, and U, (a large number would
indicate that the common neglected attributes influence the perceived
attractiveness heavily and a small number would indicate the opposite).

Since for this particular problem we are employing specification method
(b), we need to make sure that (6, a) is positive definite. This can be done by
calculating the main diagonal minors of Z. and finding the range of 8, for
which they are positive. In our case, X is positive definite if |Z,| > 0, which,
of course, only happens if |#;| < L.

Since logically 8, need not be restricted, one could assign the following
values to @, and 8,,..:

0., = (—100,—1) and 0,0 = (100, 1),
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Table 2.4

Trinomiat Probit Calibration Data®

Ay A, Ay Choice A, As As Choice
[6.481 16.196 23.890 2 15.237 14.345 19.984 2
15.123 11.373 14.182 2 10.840 11.071 10.188 1
19.469 8.822 20.819 2 [6.841 11.224 13.417 2
18.847 15.649 21.280 2 13913 16.991 26.618 3
12.578 10.671 18.335 2 11.089 9.822 19.162 2
11.513 20.582 27.838 l 16.626 10.725 15.285 3
10.651 15.537 17.418 l 13477 15.509 24.42] 2

8.359 15.675 21.050 ] 20851 14.557 19.800 2
11.679 12.668 23.104 1 11365 12.673 22212 2
23.237 10,356 21.346 2 [3.296 10.076 i7.810 2
13.236 16.019 10.087 3 15417 14.103 21.050 1
20.052 16.861 14.168 3 15938 11.130 19.851 2
18917 14.764 21.564 2 [9.034 14.125 19.764 2
18.200 6.868 19.095 2 10.466 12.841 18.540 1
10.777 16.554 15.938 1 15799 16979 13.074 3
20.003 6.377 8.314 2 12.713 15.105 13.629 2
19.768 8.523 18.960 2 16.908 10.958 19.713 2

8.151 13.845 17.643 2 17.098 6.853 14.502 2
22173 18.045 15.535 1 18.608 14.286 18.301 2
13,134 11.067 19.108 2 11.059 10.812 20121 1
14.051 14.247 15.764 [ 15.641 10.754 24.669 2
14.685 10811 12.361 3 7822 18.949 16.904 1
11.6606 10.758 16.445 1 12.824 5.697 19.183 2
17.211 15.201 17.059 3 11.852 12.147 15.672 2
13.930 16.227 22.024 1 15.557 8.307 22286 2

“ Source: Daganzo et al. (1977).

Tabie 2.4 gives a hypothetical data set for this problem, and Table 2.5
gives the necessary computer input. The computer output is given at the end
of the next section.

2.4 Maximization Methods and Computer Qutput Interpretation

2.4.1 Search Methods

Onee a log-likelihood evaluation method has been adopted, itis possible
to use standard optimization procedures to find the maximum of log L(8).
The procedures discussed in this section are the steepest-ascent, Newton—
Raphson, and cariable-metric methods. In addition, one can use search



Table 2.5
Trinomial Probit Input Data with CHOMP

(o]

—

(a} Card sequence

Job Control cards

Initial value cards %

Data set

Control card

Job control cards

Specification subroutine

Main program %

Job control cards
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Table 2.5 (contimeed)

{b) Card contents

Descriplion Actual card conlents lor the example i
FORTRAN Specification subroutine SUBROUTINE SPEC (A, PAR. K. V.SIGMA)
In this subtroutine A(f, K) is the ith DIMENSION A(5.100), PAR(3). V{3). SIGMA (3.3)
attribute of the klh obszrvation, Vi) = —PAR(]) = A{l.K)

PAR(/) represents 0, F{I)1is
the ith measured attractivencss

V(2} = —PAR(]) = A(2.K)
Vi(3) = —PAR(1} = A(3.K)

function. and SIGMA (/. J) is un SIGMA (1.1) =1
element of the covuriance matrix. SIGMA (1.2) = PAR(D)
Conlrol card® RETURN

END

(NA N f ez, NIT, )
3 2 50 3 0001 30 31

Data set {first and last cards only) 2 16.451 16,196 23.89

(CHOICE, A,. 45, 45) 2 15.557 8.307 22286

Initial value cards®

(00,50 O  €0) 0 —100.00  100.00 0.0001
0 - 1.00 1.00 0.0100

"NA, v N and T are, respectively. the number of attributes, paramelers. duta points, und
alternatives. « is a smull number vsed as a convergence crilerion, = is a number that controls
the line search (3 scems always (o work welll, N/ T is the number af iterations. H = | requesls
that the covuriance matrix of # be calculuted. and ¢ are small numbers used Lo culeulate the
derivatives of log L{h numerically.

methods that have been specifically developed for maximum-likelihood
problems [such as the one used by Hausman and Wise (1978)], but these will
not be covered in this book.

The stcepest-ascent method calculates the direction in which the log-
likelihood function increases the fastest and evaluates log L(#) several times
along such direction until a maximum is found. In mathemaltical terms, we
find the value ol y for which log L(8,) is maximum, where

0, =0+ A0, (2.28)

" is a scalar and A@ is a veclor that points in the direction in which log Lig,) .
Increuses the fastest when 7 is increased. From this new point 8, the process
8 1epeated until a stationary point from which one cannol find an ascent
direction is located.
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From elementary calculus it is known that a function increases the fastest

in the direction of the gradient, or vector of partial derivatives. That is,
for the steepest-ascent method, A@ is given by

AB = V,log L(B), (2.29)

where V,log L(8) = [8log L(8)/¢0,, ..., 0 log L{#)/06,] is the gradient, which
can be evaluated numerically.

Once A@ has been selected, one must find the value of , ¥, that results

in the largest increase of log L(8); Le.,

max log L(8 + n Af). {2.30)

y=0

This is. however, a maximization of a function of one variable, which can
kl

be accomplished with a golden section search, for instancc. An iteration of

the steepest-ascent method involves calculating AD with Eq. (2.29), n* witﬁ
Eq. (2.30), and the new value of 6, 6., with Eq. (2.28). The other two searc

!

(0.34,097)

AA
{0 £}
[(oReX)]
O (o] .G /0 0 and
Fig. 2.5 Convergence pattern of the sicepest-ascent method for a two-parameter (0 a
p il‘I the figure) trinomial probit model. [Source: Daganzo et al. {1977b).]
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methods about to be reviewed follow the same pattern except that the
formulas to calculate the search direction A® and the step size n* are different.

The steepest-ascent method is very reliable but needs many iteralions to
approach the optimurn. This can be seen in Fig. 2.5, which displays the
convergence steps of a problem similar to the one in the previous section for
two different starting points [Daganzo et al., {1977b)]. Since, as can be
gathered [rom the discussion in the two previous sections, calculation of
log 1.{8) is a very time-consuming operation, other methods, which converge
in fewer steps and thus require fewer function evaluations, can be used
advantageously for MNP analysis.

The Newton—Raphson method is used by some MNL computer packages
because, when feasible, it is the fastest search method. With this method, 0,.
is obtained by approximating log L(6) by a quadratic [unction with gradient
and Hessian matrix (i.e., matrix of partial second derivatives)equal to those of
log L{0) al the current point and setting 6,» equal to the maximum of the
quadralic function. For the method to work, the Hessian matrix should be
negative definite at each visited point, since otherwise the quadratic function
does not have a unique, finite maximum. This is automatically achieved if
the log-likelihood [unction is strictly concave (as in the case of MNL) or,
otherwise, by starting with a parameter value @ Lthat is sufficiently close to the
optimum.®

For the Newton-Raphson method n* and A0 are

= |, AQ = Vylog LIO)[ V7 log L(6)] . (2.31)

where V; log L(8) represents the Hessian matrix.

The Newton—Raphson method is not suitable for most MNP analyses
because the calculation of the Hessian matrix requires a phenomenal com-
putational effort in most instances. The method is computationally attractive,
however, for binary probit, and for trinomial probit with fixed and known
Covariance matrix because for these models the partial derivatives of log L(8)
are available in closed form (see Section 2.4.3),

Variable-metric methods have some of the advantages of the two
previously discussed methods since they do not require calculation of second
derivatives but do exhibit some of the last-converging characteristics of the
Newton-Raphson method. In the Davidon-Fletcher—Powell (DFP) version
[sce Avriel {1976) for an accessible reference] the search direction at the
{i + Dst step is given by

AB,‘ +1 = — VU log L(o,)H, N (2323)

A scarch method slopping after the first iteration of Lhe Newton -Raphson method is
soemelimes used by statisticians. It is called Lhe method of xcoring [see Rao (1965), Section 5g)-
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where H; is an approximation for the inverse Hessian matrix, which is
recursively updated according to the DFP updating formula

alq; _H 1q;Tq1-HT.-f L (2.32b)
a4, H;_,q

In this formula q; denotes (8; — @;_,) and g; denotes [V, log Li#) — ¥V, llog
L(0;_)]; at the first iteration one sets H_" quual lo an z.u'bl'll'ary negative
definite symmetric matrix {or positive definite for minimization prol?lems).
It should be noted that for MNP calibration programs, calculation of
Eq. (2.32b) is a trivial task compared with calculatlc_)n of ¥, log L(8), and_ that
consequently the computational effort involved in calculating A@ with a
variable-metric algorithm is analogous to that of the steepest-ascent methgd.
Since in a variable-metric algorithm the step size fT* i§ also calculat'ed with
(2.30) it can be concluded that the effort per iteraticn is the same W]th b.oth
methods. As is illustrated in Fig. 2.6, however, the number (_)f steps required
with a variable-metric algorithm is made smaller. The difference usually

Hi =Hi—1 +

&
0
(-0.5.|0)\\
a_-
6T ;
I ’-)
—
q —
2. L 1
Tz 0 02

[(0.0.I}
-0 [s] l £

Fig. 2.6 Convergence pailern of a variable metric algorithm for a two-parameter ({ and
g in the figure) trinomial probit model. [Source: Daganzo et al. (1977b).]
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increases with the number of parameters to be estimated and with functions
thal are approximately quadratic,
As an exercise, we apply the three methods to

max } = —29x7 — 7x3 + 18x,x,

starling at x; = x, = 10. The maximum of this function is at ¢* — (0,0}
The reader can verify the results in Table 2.6, which show the slowness of
the steepest-ascent method, and that, indeed, H; converges to [ V3f{x)] ™"

2.4.2 Computer Output Interpretation and Cost Considerations

Since in addition to the maximum-likelihood estimator one normally
wanls an estimale of its variance, and since such an estimate is given in most
cases by the negative of the inverse of the Hessian matrix of log L(#) at the
optimum & (see Chapter 3), a computer routine should produce [ —VZlog
L{#)] ™ 'as an output. This can be done, either numerically once the optimum
is reached or by using the matrix H if a variable-metric algorithm is used. For
H to be a good approximalion, however, the search procedure must have
performed several steps near the optimum since otherwise the matrix H may
not have been appropriately warmed up.

Instances in which H can be used reliably are not known yel since com-
putational experience with MNP models is still very limited: such knowledge
would be useful, however, since numerical evaluation of VilogL{f) is a
rather time-consuming operation.

Since in an estimation program the computational cost per step increases
linearly with the number of data points, it is cost eflective to implement
computer codes that only use part of the data (say one-tenth of'it) to perform
a preliminary search that should yield values of 8 and H close to # and
(Vi log L(8)]~"'. With these values as inputs, estimation with the entire data
set will rarely require more than two or three iterations and the computa-
tional cost can be sharply reduced.

Table 2.7 gives the output corresponding to the problem in the previous
section. At each iteration, the values of the parameters and the log-likelihood
function are given. Note how the value of the likelihood function increases
in absolute value immediately alter phase I since more data points ars
considered from then on. At the end, the exact and dpproximate inverse
Hessian matrices with a changed sign are given under the labels “exact and
approximate estimated parameter covariance matrix.”

The cost per step of a MNP calibration code, using the approximation
method for MNP function evaluations and the DFP algorithm as a search
method, can be estimated by means of the following formula, where [ is the
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Table 2.6

A Comparison of Three Search Technigues

Iteration

DFP method

Method employed Af

number

y

0.
0.0 —1.0

- 1.0

(

(10,10}
(10, 10)

Steepest-ascent (SA)

Initial

Newlon—Raphson (NR)

vilues

(10,10)

Davidon Fletcher—-Powell (DFP)

)
)
)

—0.113 —-0.294

—0.294 —0903

(
(
(
(

(3457, 10.65)

0.0164

1

{—400,40)
(— 10, —10)
(— 400, 40)

SA
NR

(6,0)
(3.457,10.65)

0.0164

0.091
Optimum reached

DFP
SA
NR

—0.034 —0.031
—0.031

(2.66, - 2.66)

(—8.8, —88)

o1

—0.117

(—0.048,0.006)

0.130

0.061
Optimum reached

(—269, —82.1)

DFP

(—28.3,2.83) (0.92,2.83)

SA
NR

—0.0290 —0.037

—0.037 -0.117

{0,0)

0.686

(0.070, —0.009)

DFP

—0.029 —0.037

)

—0.037 —0.l1

(0,0)

Exacl

solution
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number of alternatives, N is the numb

er of sampie points, and r is the number
of parameters:

time = a(r + 10)N(I — 21+ 3).
The formula follows from the one in Sec

each log-likelihood evaluation requires N applications of Clark’s formulas,
and that ecach step requires » log-likelihood evaluations to calculate the
gradicntand approximately ten to perlorm the one dimensional search. Since,
as mentioned in Section 2.2.3, for a reasonably fast computer & ~ 10~¢ sec,
one can apply the method to probiems with more than three alternatives,
ten or more parameters, and several hundred data points.

The direct numerical Hessian evaluation
requires a minimum of r(r — 1)/2 log-iikelihood function evaluations in the
neighborhood of #, which for problems with many parameters is as time-
consuming as performing two or three steps.

Thus, even though il is now possible to calibrate a MNP model with
existing techniques, further refinements could reduce computational costs

considerably. The next subsection discusses a refinement for MNP problems
with known covariance matrix Z.

tion 2.2.3, taking into account that

at the end of the program

243 Shortcut Gradient and Hessian Calculating Methods?

Let us assume that the covariance matrix of the error terms is positive

definite and known for each observation in the data set and that the specifica-
tion of the measured-attractiveness vector is linear in the parameters.® That
ts, the perceived-attractiveness vector U can be expressed as

where U and ¢€are row veclors of dimension I, # is a row vector of dimension
r[A]is a (r x I)-dimensional matrix of constants and attributes, and ¢ is
MVN distributed with zero mean and covariance matrix E; independent of 0.
First note that the log-likelihood function of an attribute-based sample
[Eq. (2.5)] can be written as®
n

]Og L(@) = Z IOg pc[,,;[v(oa a(n})s Eét,.)]

n=1

" This subsection contains substanti
without loss of continuity.

® Although the derivations in this section could be generalized 1o models with nonlinear
specificalions, (his wx

ts nol done because the notation becomes much more involved and the
logic is the same.

? The discussion that follows could b
discussed previously. Instead, they are b

al mathemalical derivations, but it can be skipped

¢ generalized to include the olher sampling methods
riefly discusscd at the end of the subsection.




Table 2.7
Sample Computer Quiput

NC. OF ATTRIRJTES=E 3
N« OF PARAMETERS= 2
NOe+ CGF SAMPLE POINT 3= 50
NQa OF ALTERNATIVES= 3
ERPSILUN= « 00100

ALPHA= 3.20300

NO. UF ITERATIONS= 5
PROGRAM SELECTIGN= -0

PARAMETER NO. 1

INITLIAL VALUE= Qe

MINs ALLOWABLE VALUE=-100.20000
MAXe ALLUWABLE VALUE= 190 .30200

PARAMETER INCREMENT= «Q09219

PARAMETER NOs 2

INITIAL VALJUE= Oe

MiIMN. ALLOWAEBLE VALUE= —1 402002

MAXe ALLOWABLE VALUF= 120009

PARAMETER INCREMENT= « 01000

SAMPLE DATA=CHUICE 4 ATTRIOUTE | ATTRIBUTE 2s..
2 1648100 16219500 2389000
2 1512300 11 .37300 L4 18200
2 1946900 He82200 20481900
2 18.34700 15 64300 21.23000
2 12.57800 LD 67100 13 .35500
t 11a51300 20.58200 27.83300
1 1065100 15.53700 1 7.41800
1 8a 35900 15467500 21 «05000
1 11467200 12 .66300 23.12400
2 23.23700D 19.35620 21 234609
3 13.236040 16431900 L. 09700
3 20425200 16 .6€6100 1416800
2 18.,91700 14« 76400 21456400
2 1320000 6 «B86200 19« 095020
1 1377729 165354090 15.934800
2 22430300 €,37700 9431430
2 17.76E00 B.25300 LB.56000
2 8415100 13.84500 17 :5430)
1 22.17303 13404500 1553500
2 1313400 1106700 19.108J0
1 1495100 14424700 [He 76200
3 14 .63200 10.d1100 12. 36100
1 L1.66600 10,75800 16« 44520
3 1721100 15.20100 L7« G3900
1 13.93000 1622700 22 .024090
2 15, 23700 14434500 L9« 58400
1 1334300 1104109 1J.13809
2 1684100 11.22400 1341720
3 13.25300 16499100 26461809
2 13.08900 QL.E2200 19.16200
3 16562000 1072500 1528500
2 13.47700 15.20909 24 442100
2  23.85100 1455700 19.30000
2 1136530 12.67300 22.21230
2 13.26900 L0 C76072 1791000
1 1541700 14 <1230 21,0500
2 15« 3809 111839 19.A5100
2 134023600 1412500 19+ 76400
L 1}e 4660UJ 12.84100 18..5472J0
3 1S« 73900 16.G7902 12.CT500
2 12.71300 15.10%00 13.62909
2 16. 9QRO0 1095800 19.71330
2 17.339300 685300 14.50200
2 1800809 1428007 1632100
1 11435900 1081200 2Q0.12109
2 1504100 1079400 234.66302
1 T«32220 18.94904 1690423
2 12.324Q0 S5«69730 l9.183)0
2 11.85200 [2.14700 15467200
2 1553700 8430700 22 . 28600

70

Aﬂik

BEGIN QUTPUT

LOG LIKELIHADUD AT STARTING POINT=

ITERATION |
LOG LIKELIHODD=
PAR. NO.

1

2

ITERATICN 2
LGG LIKELTHUOD=
PAR. NO.

1

2

{TERATICMN 3
LOG LIKELIHOUD=
PAR, NO.

1

2

ITERATIOUN 4
LOG LIKELIHUGD=
PAR. NO.

1

2

END PHASE [

LTERATION 5
LGCG L IKCL [HUGD=
PAR. NU,

]
o

ITERATION 6
LCG LIKFLIHGOD=
PAR. NO,

1

2

ITERATION 7
LOG LIKELIHOQD=
PAR. NO,

2

=~15«9%2499

2AR. VALUE
217755
-« 00264

=15.30301

PAd e VALUE
19712
+ 54513

—15.2148%

AR, VAL JE
«1 7055
«+O28845

-15.21308

P43 . VALUE
« 17552
«61133

~34.01645

PAR. VALUE
« 23209
&1 D64

=33 .89499

PAR. VALUE
« 23630
«485043

—33.89342

TAR. VALUE
223835
e 47568

OPT TMuM REACHED% #*& % %END EXECUTION

ESTIMATED PARAMCTEP

PAR. NDS.
1, 1
2. 1
2y 2

COVARIANCE MATRIX
COVAR L ANCE { APPROUX . )
«30202
— 004548
236985

~22. 06697

COVAR IANCE (EX
«20620E-232 acT)
—«3ET76F-02
s 99593C-01



72 2 Maximum-Likelihood Estimation: Computational Aspects

and that the gradient of logL('ﬂ) is

Vylog L(§) = Z Vologp.,,[V(8, a0), Eee]
or taking derivatives with respect to V and then with respect to # (using the
chain differentiation rule), we have

Volog L(6) = Z vy lngc(,,)(v(nhEﬁ(u) [agy]'s (2.33)
n=1
where V, denotes the vector of partial derivatives with respect to V, and we
have used the fact that V,, = 8[a,]-
Analogously, we can write the Hessian matrix as

N
Vi log L{f) = Z [a(n)]vlszg pq",(v(n)iEC(M))[a(u)]T' (2.34)
n=1

It is possible to calculate the gradient and Hessian of log L(6) simulta-
neously with log L{0) by finding Vy logp. (Vi Egm) and Vilog Pees Vs
E.) for each observation during the likelihood-evaluation process. Such
strategy will be particularly useful when the number of alternatives is smaller
than the number of parameters since in such a case Vi and V are easier to
apply than V, and V3. Further economy of computation can be achieved if
efficient ways of calculating V,, and V3 are found.

A shortcut evaluation method of V) log p/(V,Z,) and V3 log pi(V,E,),
which was suggested by McFadden (1977), is introduced next.

Consider the MNP function p;(V,X;), given by Egs. (2.14 and 2.15), and
write its partial derivative with respect to V; as

OpVE) ¢ (e [ 8@|V,Ey o
aVJ - j:nqr.— J:I'i=_w J:l1<n, 6VJ du, J#L

Since uand V enter in the same way but with opposite signs in ¢{u|V, £,),
one has

op(V.E © d ) L.
Pwkfjjf_%"%ld it

which after changing the order of integration and integrating with respect
to u; reduces to

o
g <o Byog < Jug g <y W= —rm

Uy =y

dul - duj—l d”j+l .- du‘v, J?‘E i (235)

LM blulV.29)
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The integrand of Eq. (2.35) can be written
"J e [(277: J‘E |:]71f2

-expl_j(ul_Vls'"sui_p}s"'suf_I/ia"-sul'_v})

u, — ¥
w — ¥
W : ’ j#L {2.36a)
u — U
uy — W

and we note that the exponent in this expression is an (I — 1)-dimensional
quadratic equation in u, 4z, ..., 4; |, sy, ..., and u;, which can be
written

u(j)Qu(j)T — 2u(j)RT + VEZ 'V, (2.36b)
where u(j) represents the vector (u,,us,..., U M1, .-, t), Q is an
(I — 1) x (I — 1)-dimensional, positive definite matrix related to X; ', and
R7 is a column vector that depends on L7 ! and V.'° It is easy to show that
the matrix Q can be obtained by adding row j of £;* to row i and then
column j to column Ji. The vector R can be obtained by deleting the jth
element of YE; ! and adding it to the ith element.

Equation (2.36b) can be alternatively written

[u(j) - RQ™']Q[u(j)’ — Q~'R"] — RQ™'R" + VL 'V,
or, letting &7 (i) = Q, V(ij) = RQ ™', and K(ij) = RQ™'R" — VE; 'V%,as
() — VEIE ') [u()) — VT — KG).
The indexes i and j denote the alternative of the MNP function and the partial

derivative being considered. Entering with this expression into Egs. (2.35)
and (2.36) yields

BP.'S%E(Z) _ _(|§1-r:|(;j¢)||)l.'2 exp ( -I%@)
.L(ui...LJ_NHLHQH...J":O:_m

' f <, LD VEL ELD] o)), j#L

1® The matrix Q is pusitive definile because, for any {f — 1)-dimensional vector u{j) # 0,
we can define an I-dimensional vector u # 0 [with u; = u; and same elements as u(;j)] which
due 1o the relationship betwesn Eqs. (2.364) and (2.36b) satisfies u(f)Qu{j)T = vE; 'uT >0
[which is positive by the definiteness of £ '],
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The integral in this cxpression, however, is the MNP function correspond-
ing to the (i — 1)th alternative (or ith if j > i) of a MNP model with 7 — 1
alternatives, mean V(ij), and covariance matrix X{i/). Thus, we write

apAV,E ¥ i)\ /2 K(ii i } o
op'(aV- I _(|27;|(;:D CXD(%)IJV[V(U),EAU)]: j#i (237)
J

where i =i — 1ifj<iand{ =iifj > i. This equation is easier to calculate
than a numerical derivative since it involves the probability of choice for a
model with I — 1 alternatives (instead of I). The computational savings are
most noticeable for models with few alternatives, with the most dramatic
simplification occurring for I = 3; in thal case, the derivative requires calcu-
lation of a trivial binary probit [unction.

Before illustrating Eq. (2.37) with an example, we note that if X%, is the
same for all the observations in the data set, the values of Z.(if), £; '(if), and
the square root in Eq. (2.37) can be calculated off line for all possible com-
binations of i and J, with consequent further computational simplification.
The derivative with respect to ¥ can be obtained by noting that

pi=1-— Z Py
k#i
and that
apdV,Z,) dp(V. L)
= — v R 2.38
av; Jgi aV; @39

Of course, the derivatives of log p,(V, L) are simply obtained by dividing
Egs. (2.37)and (2.38) by p{V,X,).

Since E.(ij) is positive definite (see footnote 10), the left-hand side of
Eq. (2.37) is always strictly negative and the left-hand side of Eq. (2.38) is
always strictly positive. This means that for MNP models in which E; is
nonsingular, the choice probability of an alternative is a strictly increasing
function of the measured attractiveness of the corresponding alternative,
and a strictly decreasing [unction of the measured aftractiveness of the other
alternatives. This is an important property of the MNP model, which will
be used in Chapter 3 as supporting evidence for Conjecture 3.1.

As an llustration we now calculate dp;/2V, for the example presented in
Section 2.2.

=(2,2,3)1f

Example Calculate p,/dV; a 2
1
1
3

E.:

<

tv
2 0
0 2
1 1
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We invert Z; and calculate Z: '(1,2) and L1, 2):

[ 5 1-2
Tel=gl 1 5 -2,
-2 -2 4

_ 1/ 12 =4\ 1/ 3 -1 '
o N1,2) == == b
 (12) 8( —4 4) 2(_1 1)’ and E§(1’2)=(1 3)'

We then calcuiate R, V(1,2), and K(1,2)
VIS ! = §(6,6,4),

R=3(31),
1 11
V(1,2) = RE,(1,2) == =
(1,2) = RE(1,2) 2(3,1)(1 3) 23)
and

1 AV > 122

Jr<(1,2)_d—1(:‘},1)(1 3)(1)—§{2,2,3) 15 —24f2 )=
-2 -2 4/\3

Since [£,] = 8, [Z(1,2)) =2, and i = 1, Eq. (2.37) reduces to

1 _ _ 4200 Y —1
o 2009, 2.3),(, =—0.200<D(\/‘5)=—0.048.

Tht_a reader can easily check this result by calculating the derivative
numerically, using either Clark’s formulas or the mtegration method. For
V' =1(2,2.1,3), the approximation yields p;, = 0.217 and the integration
method p; 2 0.2156; in both cases Ap /JAV, =~ —0.05. M

In instances where the approximation formulas do not closely approxi-
mate the MNP probabilities, but the approximation method is used anyway,
there I8 no guarantee that the shortcut technique will approximate satis-,
fgctorl[y the derivatives of the approximation mods]. Experimentation will
dictate whether this is a significant problem or not. On the other hand, the
Sh_ortcut technique should present no problem when used in conjun(;tion
with the numerical-integration approach.

The shortcut derivative-evaluation method can be applied to likelihood
fl_lnctlons of choice-based samples and random samples with ranked alterna-
tives. For choice-based samples, one can calculate the gradient of the first

Ll s
This value ' i
Koy need nol cqual zero. The reader can verify that for this same example
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term of Eq. (2.7a) with the shortcut method and then add to it the gradient of
the second term, which can be easily calculated numerically [rom Eqg. (2.7¢).
Alternatively, if one uses the estimator proposed by Manski and Lerman
(1977), the task is trivial, since the estimator only involves maximization of a
weighted sum of logarithms of cheice functions [Eq. (2.7b)].

For ranked alternative data, the component of the log-likelihood function
corresponding to one observation is the logarithm of a MNP function [see
Egs. (2.10), which give the measured attractiveness vector and covariance
matrix]. It can be seen that if X, is independent of 8, so will cov(Z,) and
therefore the shortcut method can be applied without problems. However,
cov(Z,,) will change [rom observation to observation and one cannot derive
Z.(if} off line with this type of data, The chain-differentiation rule also yields
a slightly different version of Eq. (2.33):

N .
Vylog L(#) = Z Viz,., 108 Pil E(Z ) cov(Z) ] AE:)[a(n)]q- (2.39)
n=1
For problems in which the calculation of i, j) can be performed off
line, calculation of the gradient with the shortcut method takes approxi-
mately as much time as calculation of I choice functions for a problem with
[ — 1 alternatives. For the approximation method this is

time for gradient = al(I — 3)(I + 2)N sec,

and the time [or one iteration of a variable metric algorithm (allowing for
ten log-likelihood evaluations for the line search) is

time = eN[I(I — 3)(I + 2) + 10( — 2)(J + 3)],

which can be compared with the numerical-derivative formula approach
on a ratio basis. Since both scarch procedures visit the same sequence of
points, they converge in the same number of steps and the ratio also indicates
the relative calibration cost with the numerical and shortcut approaches.
Table 2.8 summarizes the results flor different values of the number of param-
eters r and alternatives /. Tt can be seen that the maximum economy is
achieved [or problems with few alternatives and several parameters. Although
gradient computations are much more efficient with the shortcut method,
some of the dramatic computation impact is lost by the one-dimensional
search required by the variable-metric search. A much more noticcable
difference would result if the line search could be obviated with the Newton-
Raphson method. The Newton-Raphson method, however, requires the
Hessian at each visited point and thus can only be used if the Hessian is
easy to calculate.

Hessian calculations are also important because the negative definite-
ness at @ ensures that we are at a local maximum of the log-likelihood func-
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Table 2.8

Computational Economy with Shorlcut Gradient
Calculations Using the Approximation Method
and a Variable-Metric Algorithm

{Calibration time withoul shorteut}/(Calibration lime willy shortcut}

Number of parameters

Number of

alternatives 2 4 4] 8 10
3 .2 1.4 1.6 1.8 20
4 1.02 1.2 1.38 1.54 1.71
5 093 1.08 1.24 1.39 1.55
6 0.86 1.00 1.14 128 143

tion land the ne_gatwe of its inverse gives an estimate of the covariance
matrix of the estimator.
We now discuss how the Hessian matrix can be calculated and how one

can apply the technique to develop a very efficient trinomial probit algorithm
that may use the numerical integration method,

Taking derivatives in Eq. (2.37) one has

&*pi(V, L) _ _ (lEE(U)l)UZ exp[ﬁ@:l

av.av, 27z 2

gy Tyes
Ve[V Z4if) ] %@ Vi J. (2.40)
k
_ A similar formula would be obtained from Eq. (2.38) if i = j. Since V{ij)
15 a linear combination of V, the last factor in Eq. (2.40) is a constant vecu{r
that can be calculated off line. Calculation of Eq. (2.40) is thus computa-
tionally equivalent to calculating the gradient ofa MNP function with respect
to V [or a problem with I — 1 alternatives. This is an involved proposition
for Problems with several alternatives, since one must calculate (I + 1)1/2
partlal derivatives. The Newton-Raphson search is thus not likely to result
In computational savings except for problems with two, three, and perhaps
four alterqaliveg, since in these cases Eq. (2.40) would assume a closed form
_"_l"hg trinomial probit model is particularly interesting because P [V(ij).
Z{ij)] is a binary probit function that can be expressed as the cumlulative’
normal function &(-) of a simple function of V(jj) and LAij) (see Section 1.3.3)
Consequently, the second derivative requires only a single evaluationlol.'
(,b_(-) and some multiplications and additions. Furthermore, since for the
blnaryl quel the two entires of ¥, ,p, are of equal absolute value and
opposite sign, only one of them need be calculated.
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The Hessian of logp; is obtained from the Hessian and gradient of p;
with the chain differentiation rule which for this case is

Vrzf logp; = (Ilpiz)[(vai)T(vai) - Pivi"'Pi]-

In addition to the results of Eq. (2.40) this equation needs the values of
p; and V,p;; this is not a problem, however, since this information is already
available. The Hessian of log L(8) is of course obtained with Eq. (2.34), as
was done with the numerical-evaluation method.

Since the gradient and Hessian calculations for a trinomial probit model
with fixed covariance matrix are very simple, it seems reasonable to use the
Newton-Raphsen method. The method is particularly useful with the
numerical-integration approach because the marginal effort required to
obtain the gradient and Hessian is small and log L(9) has to be evaluated only
oncec per iteration.

For example, a problem that converges in five steps (not unusual for the
Newton-Raphson method) with 500 data points would require just 2500
trinomial probit function evaluations, or approximately 25,000 evaluations
of ®(x). This is to be compared with the 10 to 20 times higher cost per step
of the variable-metric algorithm with numerical derivatives.

The Newton—Raphson method converges quickly on well-bechaved
“smooth” and concave [unctions and has proven its usefulness in MNL
calibration codes. However, since the properties of log L(6) for the trinomial
probit model have not been studied successfully yel, it is difficult to assess how
effectively the Newton-Raphson method can be applied to a MNP model.
The next section discusses the scant knowledge that exists regarding the

unimodality of log

2.5 Properties of the Log-Likelihood Function

Although the steepest-ascent and variable-metric algorithms discussed
in the previous section converge to a stationary point of the log-likelihood
function, in general, there is no guarantee that such a point will be either a
local or a global maximum [see Theorem 10.1 of Avriel (1976, p. 293)].
However, if the log-likelihood function is concave, there is no need to per-
form any further analysis becauseevery stationary point ol a concave function
is also a global maximum. Concave log-likelihood functions arise with the
MNL model and, as is shown later in this section, with the binary probit
model.

For general likelihood functions, a stationary point can either be a local
minimum, a local maximum or a “saddle point,” ie., a point that is neither a
minimum nor a maximum. The type of stationary point is given by the
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Clclation metho) 1§ syt Uhreby the importance of Hessan
) n ol the log-likelihood functi

l;g;fs rf:ilc 1:ngl,{one cannot tell whether a local maximum or micr)llilnfl?sf E;)st
Jeen ¢ minir;m I?]wever, if 1! has full xjank, a positive-definite Hessian indicates
e, mini Th? a'negatlwc definite, a4 local maximum, and an indefinite
radd Bp_ - This is easily seen because the Taylor-series expansion of
og L(#) in the neighborhood of the stattonary point 6* can be written

log L(6* + A0) = log L{0*) + 3 A0 V og L(0%) AGT AB -0
and log L{0* 4 AB) > (or <) log L(8*) for all small A@ if and only if
1A0VZ log L(6¥) A" > for <)0

for all A@. This is of cours i if V2 i i
gy € true ifand only if V7 log L(6™) is positive (negative)
o e"il;lﬁe negative c!eﬁnitn?ness of V3 log L(6*) can be determined by inspection
ol I(;rc;ts.; prmCip'al diagonal minors or its cigenvalues (see Appendix D)
Sian matrix is not negative definite, we ma i -
' , y not be at a maximum
gfl:smtjl:ebze;rﬁh pfocgdfure must continue. The search direction, however
elermined from the gradient of lo ior int
: tb : : g L(0) at the stationary point
Z};}ﬁ;:;elnt :sl Zero t*here; 1t can, instead, be determined by maximiziyng tllllle
o Sm;:;e] %g L}gﬂ" + ABJ. — I-og;(t?*) while holding the length of Af constant
d small uch a direction is given by the eigenvector of V2 log 1.(6*%) that
corresponds to the largest eigenvalue, ! ’ )
The search procedure then i

_ - continues nermally until a negative- i
Hcslsjlan matrix corresponding to a local maximum is found safiverdefinie
over nllessllt is lfnown.a priori that the log-likelihood function is unimodal
is ungfq ;)é:ais nl;amtmm_n is ghlobal), the only way to check whether the maximum

Yy starting the search from several differ i i i

_ t points until o

reasonably sure that there is no oth i s als This

_ er point that is also a maximum. Thj
g;?tczs:tﬁandbf ratﬁﬁr time consuming but the cost can be cut by usiné onllj

€ data while carrying it out. In the future, analvs i
_ ; _ yir . , ysis and expe

;mlllpliot_aably 1dent1!"y conditions under which MNP models have ugir;lzzfj
og-likelihood functions and the search for their maxima will be simplified

2 Since is gi

diccctly pmpl'z:us(;rlllzlll [AB,hlog L{0* + Af) - log L(8*) is given by L Ag Vilog L{O*}AG", AD is

S Droportion o the vector of unit length, ||x|| = 1, that maximizes xV: logL,(G*}xT

Db adapn ma::j;yér;:;;;zc :ind rt::al(:J g can be expressed as Vjlog L{#*) = BDBT where.

_ \ values, an is a square matrix, such that BBT — 1 .

iy ’ . s

Olr'li tch:ncéiedn;e‘cilrzfs.ai?c; lhe‘quant;ty t_o be maximized can be expressed as yD;'v%‘;sir)?l\;)S

e [Uca[i(;n . 1 gn x =yB" Since D is diagonal, v is a veclor of zeros with a om;
corresponding to the largest element of D. The veclor x is obviously given

by the correspondin
g column of BT (ro f R . N
Sponding to the largest ¢igenvalue. {row of B) which is by definition the eigenvector corre-
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A preliminary result, involving the binary probit model, is given below. We
first prove the lollowing lemma.

Lemma 2.1 The functions log ®(z) and log[1 — ®(z}] are strictly con-
cave lunctions of z.

Proof Since such functions are continuous, a necessary condition for
strict concavity is that the second derivative be negative. Since 1 — ®(z) =

&(— z), the second derivative of log| 1 — ®(z)] coincides with that of lo_g (D( - z_),
and it suffices to show that d2log®(z)/dz* < 0. The second derivative 1s

d?log®(z)  d [¢(2):| _992() - %)

dz2  dz| ®(z) @(2)* ’
where ¢'(z) represents the derivative of ¢(z). This expression is negative if
$*(z) > ¢'(z)D(2). (2.41)
Since for any finite z,
¢d(z) = 0, 0<dz) <1, and &'(z) = —z(z),
Eq. (2.41) trivially holds for z = 0.
For z < 0, Eq. (2.41) can be replaced by
O(z) < Plz]z], z2<0, {2.42)

but this identity is a well-known property of ®(z) [see Feller (1968, Vol. 1,
p. 175), for example), which is proved here or completeness:

I g 1,
D(z) = «/T_ﬁf‘” CXP<~2t )df
1 = "_t
=\/—2_ﬁf_m Wexp(

1 ol -‘t ] 2) H -
- —exp| —=t* ) dt il z<0
<\/ﬁj‘—w |zl ( 2
= ¢(2)/le| ir

which concludes the proof. W

B -
o~

We can now study the concavity of binary probit models. Since, as was

explained in Chapter 1, every random utility binary probit model can be

reduced to a form
p, = O[V(8,A)],
pa =1 —O[V(B,A)],

A
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where V(-,-) is a [unction that depends on V(-,} and Z:(,-). we state the
following theorem:

Theorem 2.1 The log-likelihood [unction of a binary probit model cor-
responding to an attribute-based sample is a concave function of @ if the
function V(#, A) is a linear in 8.

Proof We first note that for any observation # with choice ¢y and
attribute vector a,

log (D[V(ﬂ, a(n)):l
log{l — ®[¥(8,a,,)]}

if ¢, =1

l%P%ﬁmJ={ o
tny —

is a concave function of ¥ (see Lemma 2.1). Since a concave function of a
linear [unction is concave (see Appendix D), log P, (0.a,)is concave in 8.

Since logl(8) is a sum of concave functions, log L(8)=Y7_,
log P.,,(0,a,,)is itsell concave, and the proofis complete. W

For choice-based samples, it is not known whether log L(0) is concave
in a general case. However, we can state the following corollary, which
concerns the pseudolikelihood function log L,(8).

Corollary 2.1 With the same restrictions as above, Eq. {2.7b) is concave.

Proof Equation (2.7b) is a linear combination {with nonnegative con-
stants) of concave functions, which is itself concave. M

The following also follows immediately from the theorem.

Corollary 2.2 A binary probit model with linear-in-the parameters
measured attractiveness and fixed covariance maltrix has a concave log-
likelthood function.

Proof  In this case V(0, A} is obviously linear in 8. W

2.6 Summary

This chapter has presented the state of the art in calibration of multi-
nomial probit models. Although the techniques and problems are metic-
ulously described, the information in the chapter should not be regarded as
final since current ongoing research may result in substantial improvements
to the methods and techniques presented. As a matter of fact, a main purpose
of this chapter is to describe the state of the art of MNP calibration calcula-
tions, so that further thinking on the subject will be stimulated. Estimation
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of multinomial probit models is now possible thanks to the speed of modern-
day computers and to some efficient software that has recently been devel-
oped. It seems that, at least for the time being, there are two MNP function
evaluation methods that can be used. The numerical-integration method,
in conjunction with analytical evaluation ol gradients and Hessian, can be
used for trinomial probit models with linear-in-the-parameters specifications
and known covariance matrix. The recommended search procedure is the
Newton-Raphson methed, since it requires a minimum number of log-
likelihood evaluations. The approximation method can be economically
applied to general problems with more than three alternatives and several
hundred data points. A variable-metric or similar algorithm that does not
require Hessian calculations seems most appropriate since, so far, experience
with it has been satisfactory. A third MNP function-evaluation method
{(Monte Carlo simulation) has been also proposed, but its applicability seems
to be restricted to prediction problems.

At the time of this writing, there already are a few computer programs
for estimation of MNP models. CHOMP is a research-oriented computer
program developed by the author and his associates that uses the approxi-
mation method and a variable metric algorithm. The output of CHOMP
includes the maximum-likelihood estimate § and an estimate of its co-
variance matrix. Some economy with large data sets is achieved by using
only some of the data in the initial stages of the search.

The wnimodality of log L{#) has been established only for the binary
probit model with a linear-in-the-parameters specification of V{6, a). Since ex-
perience with problems with more than three alternatives is still limited,
one must proceed with caution because multiple maxima and/or saddle
points may be encountered.

Advzances in MNP model calibration can be expected in the near future
with emphasis, perhaps, on enhancing the accuracy and efficiency of choice-
probability calculations and improving the understanding of the unimodality
ol log L(#).

Some bibliographical notes on the computational aspects of MNP cali-
bration follow.

The papers by Hausman and Wise (1978) and Andrews and Langdon
(1976) contain, respectively, what appears to be the first calibration of a
MNP model with more than two alternatives and a clear description of the
numerical-integration method for three alternatives. Section 2.2.1 is based
on the research of these authors. The simulation approach of Section 2.2.2
was proposed by Lerman and Manski (1977}, The papers by Daganzo et al.
(1977a, 1977b) and Bouthelier’s dissertation (1978, Chapter 2) provide much
of the background for the discussion in Section 2.2.3. For the theoretically
oriented reader, Clark’s original paper (1961) is highly recommended, in
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particular, the appendix containing the derivation of the approximation
formulas. Clark’s formulas were first applied to a choice model by Daganzo
and Sheffi (1977).

The shortcut gradient calculation technique of Section 2.4.2 was proposcd
by McFadden (1977), who also gives a concise review of other discrete
choice model calibration issues, The user’s manual and listing of CHOMP
(the previously mentioned calibration code) are given by Daganzo and
Schoenfeld (1978). CHOMP is based roughly on the original experimental
code developed by Daganzo et al. (1977a)



Statistical Aspects of Multinomial

Chapter 3 : _
P Probit Model Calibration

It was mentioned in Chapter 1 that applicatiqn Qf a MNP modfzflireq'unrci
three steps: specification, calibration, and p.)red!cltlon. Since §pelcll( (Zitll(:é 1e
is a step that has to be done based on one’s intuilive or technica I:i ‘]Nfor El
of a problem, and the type of application greatl_y mﬂuenf:es the mo 1? t'ons,
an in-depth discussion of useful MNP specifications for dlﬂ’e_reflt app 1((1:.a eIcﬂ ‘
areas will not be given in this book. Chapter 2 addressed this ]SSU; in 1; " n?
by showing how a gap-acceptance study could be cast as a lVfN [_Jfli'oation,
thereby illustrating how technical kpowledge can help in I_node ilpem 1car-cut.
In many applications, however, it is not possible to _clerlve sug ac eermrS
specification and an investigation of the effect of 1_)0551b1e: speci (l:atur)_?h rors
in the accuracy of the model is warrar'nte_d. This chapter deals md ok
issues as well as with several other statistical aspects of MNP mode cthe
bration. Of no concern will be how one obtains the estlma-tes, s};lmct: e
mechanical aspects of calibration have already been covered in Chapter 2.

3.1 Model Specification Considerations

) . i

We assume lor the rest of this section that the true model* hasa measuretcllr

attractiveness vector that is linear in the parameters and that consequently
can be expressed as

V = a[d], (3.1)

i i i i ch
! As was mentioned in Chapter L, and is usual in econometrics, we assume there is su
a thing as a true model and a true parameter value.

84

SR e
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where [0] represents an s x I marrix whose entries are either known con-
stants or clements of 8, and as usuzl V s an I-dimensional row vector of
measured-attractiveness values and a an s-dimensional vector of attributes,
which, in order to allow for the representation of constants in the specification
of V, starts with numeral 1. The covariance matrix of the irue model I,
will be allowed to depend on @ but not on a. Although these qualifications
restrict the scope of the models that are the subject of our discussion, they
still apply to many situations. For example, the modal-split numerical
example of Sections 2.3.2 and 2.4.2 satisfies al] the requirements. In a non-
MNP context, the assumptions of this section are standard in most dis-
aggregate demand modeling efforts to date since, with the MNL model,
computer programs are prepared for linear-in-the-parameters specifications
of the measured-attractiveness vector only, and as was seen in Chapter 1
the covariance matrix of an MNL model is fixed and known. Furthermore,
the requirement that the covariance matrix of the true model is not a function
of a is not as restrictive as it may seem, because one of the objectives of this
section is, precisely, to find instances where, due to the characteristics of
the data and/or the nature of the problem, it may be wise to use 2 spectfication
that does depend on a.

In the discussion that follows, several MNP specification issues will be
covered, in particular, errors in the data, errors in the specification of the
model, population taste variations, and parameter estimability.

3.L.1  Errorsin the Data

The model considered in this section is

U=ald] +¢ (3.2)

where as usual U is the perceived attractiveness and & an unobservable
CITor-term vector that is MVN distributed with mean zero and covariance
matrix E.(6). The question being addressed is What is the appropriate coursc
of action we should take if we suspect certain major inaccuracies in the
measurement, or reporting, of a in our data? In other words, if our data
Set consists of a reported attribute vector af, for the nth observation (i —
L2,...,N), which differs from the true, unknown attribute vector value
A, by an amount B’

Ay = 8y + 11y, (3.3)

18 there way of modifying the model to avoid biases in the estimation of
97 The answer is, under certain conditions, yes.
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If n,,, varies across the population according to a MVN distribution
with mean 7 and covariance matrix X,, Eq. (3.2) becomes

U(u) = a(ﬂ;)[ﬂ:l + é(*n) éz':l) = é(u) - "(n)[e:ls (34)

where £€* is unobserved with mean and covariance matrix given by
E(Z*) = —7l6], (3.5a)
cov(é*) = Z.(0) + [0]"Z,[0]. (3.5b)

If the values of 7 and I, can be guessed (e.g., § may be known to be zero
and L, diagonal with known entries), one can estimate [0] correctly with
the available data using the following MNP model form:

V*(6,a*) = (a8, — D[6], (3.62)
THO) = Z,(6) + [0]"Z,[6)- (3.6b)

Once # has been estimated it is possible to replace it into the original
specification of the model, Eq. (3.2), to obtain a calibrated choice [unction
dependent on a.

If the values of 7§ and I, are not known, it is still possible to calibrate
a MNP model with

V*(0,2%) = a%,[6] + 0,, (3.72)
LX) = £.(0) + 6s, (3.7b)

where 4, is an I-dimensional vector of additional parameters corresponding
to the constant vector §{@], and 0 is a positive-semidefinite matrix that
replaces [6]"Z,[0].

Unfortunately, inclusion of @, and 8, in the specification makes the
parameters that appeared only in £(0x), or only as independent constants
in V, unestimable [Section 3.1.4. discusses estimatibility problems in general
and Eqgs. (3.7) as an example]. Since this precludes obtaining a choice function
based on Eq. (3.2), the calibrated choice function must be derived from
Eqgs. (3.7). It will therefore be a function of a* {not a), which is a variable
whose distribution across the population must be forecasted for prediction
purposes. This is not desirable because in many instances the distribution
of a* is so difficult to forecast that, in order to carry out a prediction, one
has to guess the distribution of a* with a procedure involving as many
subjective decisions as the one needed to guess the values of i and I, in
the data. Thus, unless the distribution of a* can be forecasted easily, it 1s
much meore desirable to guess 7 and E, and use Eqs. (3.6) to estimate 8 since
the resulting model involves fewer parameters.
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Example The modal-s

iit model of Secti .
lerms of @ and a as P ¢l of Section 232 can be defined in

a= (I’GI:HZ!(Ia)J 6 = (815 92)5
0 0 0

=8 o0 0 1 ¢, 0
(] = 0 -9, o ZO=|0 1 of

. _II‘ the data in Table 2.4 contained measure
BIVING ay, a5, and ay, these values would have
and the specification of the model modified acc

Assuming that the differences between th
values are independent identically distributed
mean and variance proportional to a*:

ment errors in the columns
to be regarded as being a*,
ordingly,

e table values and the true
normal variables with zero

00 0 o0
n~MVN[0,9,|0 4 0 O

00 at 0|/

00 0 a%

one can obtain V*¥(§,a) and Li(0) from Egs. (3.6):

Vi{0.2) = a*[0] = (—6,a%, - 0,a%, — 0,a%)

and
I8, 0 C -0, o0 0
@=|0 1 0]+{0 0 -4, o0
0 0 1 0 0 0 -8,
¢ 0 0 0 0 0 0
0 B3¢f 0O 0 -6, © 0
00 fat o0 0 ~0, 0
0 0 0 By 0 0 -9,
1+ ato?e, 8, 0
= 6 1 + at020, o |
0 0 1 + af620,

Calibration of these functions with the data in Table 2.4 would yield

values of §,, 4,, and 0, th i i
: , 8, 3 that could be substituted in both igi
modified models for prediction purposes, " the original and
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When the appropriate allowances for errors in the data are not made,
the resulting parameter estimates will generally be biased. Unlortunately,
closed form formulas to predict the bias are not yet available because 0
does not assume a closed form as it does in the case of multiple regression.
Neverthcless, it helps knowing that one can avoid the possible biases by
modifying the MNP model in a simple way.

The Missing Data Problem

A not-infrequent occurrence in many estimation problems is the absence
of some attributes in some observations of the data set. For inslance, in
studies requiring socioeconomic data it is not uncommon for many people
not to know, or not to be willing to disclose the value of attributes such
as income. In such cases, if there are only a few observations with missing
data, it is possible to omit these observations from the data set and proceed
in the normal way. If many cbservations contain missing data, however,
the accuracy of the results will suffer, and it may be worthwhile to use one
of two techniques, similar to those used when there were errors in the data,
that can use all the data points in the sample. They are guessing, and using
the data.

Ifa good guess can be made for the missing attribute, we can include the
guess as part of the sample and correct the covariance matrix to take into
account the possible error. The technique is identical to the one leading to
Egs. (3.6). Let, in this section only, ay,, denote the components of a, that
are not guessed, ay, the guesses, [6;,] the rows of [#] that correspond to
guessed attributes for the nth observation, and [0(,] the remaining rows.
Using this notation, the perceived-attractiveness vector can be expressed as

Ugn = il ] + ain[05] + tin[0in] + o G8)

where n;, represents the error in the estimation of af,. If the accuracy of
the guessing process can be assessed, it may be possible to obtain the dis-
tribution of Uy, which under the usual conditions of normality and zero

mean for g, corresponds to a MNP model with

Vi = aw[0in] + aiu[06), (3.92)
‘:?:ll = é(rr) + m’::l) 2;:} > (39b)

and :
Lo = Te + [00] T, [0 ]- (3.9¢)

If a good guess cannot be made, it may be possible to estimate the mean
and variance of the missing attributes conditional on the observed attributes
from inspection of the complete observations in the data set. We can then

£
i
%
&
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Set a” eq l s
{r) m E tn)
ual to ]le ea“, i Equal to the covariance matr]x, alld use
EqS (3.9) IOI eSt]llla[l()n. I h]S tCChIllque 18 Slmﬂar fO the ZErg-oy f]e;' }EQ'J ession

» since then ong hag
portant to note that in deriving
Ing and data-use methods (or
not be influenced b ¥ the choice
oq equation representing the
will no longer be meaningful.

to estimate only a mean and a variance. 1t is im
the values of ag, and L. for both the guess
any hybrid thereof ) the (:;}Opted values should
of the -observation, for otherwise the ]-ikeliho
probability of the choice given the attributes

3.1.2 Specification Errors

Itisn iori
e Specj?]:: ;tajs(,)y torstalc a priori the effect of omitting an attribute from the
e Spe HOWI; ofa 'MNP model] on the parameters associated with other
o gene:m] ser as hgppenec_:l with errors in the data, under certain
Ly g0 erro;m}gllons, l;[ 1s possible to correcl the specification of a model
- Ihe problem is analogous ¢ i
: : _ ot ¢ i
Some atlributes missing in all‘the o‘bsefivations et of using a data se i

\‘\‘C CXPICSb tlle [)ercel\'ed attr aCtli‘elleSS Q the correc 5‘ SpCCIﬁed IIlOde]

U=2af0]+a"[07] 4 ¢, (3.10)

wher i " i

ﬁcatiznthff ?;trigpteg of a’ are, mistakenly, being omitted from the speci

o MVI.\I Withem ;stnbutlon of A”, conditional on a’, can be Considerel:c)I tlc;

an vector and covariance matyj

o) rx dependent !

don(e:e&ti;?lg reduce Eg. .(3'10) to a MNP model in It)he sameo r\lv: *as

vy mon £ r?e (?;f). T_hls is difficult to do in practice, however, beczuse one
xnaustrve list of the neglected attributes (as they were called

in Chapter 1); and even |
- ; if many of them we - :
determine the form of their dependence on ;ff-known, it would be difficult to

alssuThc:se problems are alleviated if as is often the case
Casenti;et:xat the”neglected attributes are independent o
o termeri)n .'L [6"] can be treated as a constant vector plus a zcro-me:

» DOth 1o be determined from the estimation process -

a ,[0,;] =g + élr, L MVN(O, Eg'")' (311)

FO]‘ es[' ati s

2 Yield?liéon’ " is added to the first row of [07], which premultiplied b

Covariance C(t)r-reCtid.megsumd'a”racti\’eness vector V¥, The correcteg
matrix XF is given by L:+ E... The resulting model js stijl

as was
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MNP and therefore it should be possible to obtain satisfactory estimates
for [#"]. Multinomial probit is the only discrete choice model in existence
today that, by admitting a full parametrization of the covariance matrix
of the error terms, can capture properly the consequences of neglected
attributes. We now show that the example that was calibrated in Section
2.3.2 could correspond to a MNP model with some neglected attributes.

Example The true specification of a three-alternative modal-choice
problem could be as follows:

alternative 1 (bus) U, =—0,T, + Cr+ &,
alternative 2 (streetcar) U,=—0,T,+ Cr+ ¢y
alternative 3 (automobile) Uy=—0,T5+C, + &s.

In these equations T; represents the travel time by the ith mode in
appropriate units, C; represents the comfort associated by a person with
transit travel (in attractiveness units), and C, the comfort of auto travel.
Since it is difficult to provide an objective measure for comfort that is
quantifiable, the variables C, and Cr will be omitted from the model specifi-
cation (i.e., they will become neglected attributes) and will be inserted into
the error terms.

Assuming the £;’s are independent, identically distributed normal vari-
ables with zero mean and the same variance o7 = 0,, and that C; and C,
are also mutually independent normal variables (independent of Ty, T,
and T, too) with unknown means and variances,

E(Cy) =03, E(C4) =04, var(Cy) = var(C,) = 05,

we can proceed to write the corresponding MNP model.
The partitioning of a and [8] yields

a' = (1: Tls TZJ T3)a a’ = (CT: CA)s
0 0 0 :
o=, 0 0 o 110
B1=1 4 -6, 0 [9]_[0 0 1}'
0 0 -0,

The mean of a”[#] is
0" = E(@")[0"] = (05,05.04)
and the covariance matrix is
s 85 0

T = [0TE,.[0]=|0; 05 0
0 0 6
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Consequently, we have

63 63 94
VE=(1,T,,T,,T;) =0, 0 0
0 —0, 0
and
02 +05 65 0
EEF: 65 02+05 0
0 0 0,40,

" This is a more general form of the example in Section 2.3.2 because
eére we assumed that 0, = 8, = 0. Aside from that, the models are identical

IOI d we have dO ure tIaVeI “I“E ma siem o un t

Other specification errors, for example, those involving misspecification
pf the covariance matrix, are more difficult to study. Of particular interest
Is thes pe.c:ﬁcatlon error that occurs when the measured-attractiveness vect
18 not a linear function of @, but a linear form js adopted nevertheless e
lineWe ﬁrs_t shqw that it is always possible to use, at least conceptuaily, a

ar spe-c1ﬁc_at10n nvolving some extra parameters instead of the nonlinea
s_pecnﬁcatlo.n in _6. We will also assume without loss of generality that thr
linear Specification used is the approximation of the nonlinear fi nction in
the neighborhood of the origin & = 0. snetionn

Let the true specification of V. b .
: i be ¥ = (6, a), which c '
means of a series expansion, as ! J (6, a), an be written, by

Vi= Vi0.8) + Vy¥i(0,2)8" + 0V31(0,2)07 + - -
Note that both the gradi ie
o a ol gradient and Hessian of ¥ evaluated at # = 0 are functions

y If ber simplicity we ignore Fhe higher-order terms (third order, etc), it
possible to model ¥, with a linear specification, provided one introdu::es

Some additional parameters @, t : i
_ x toreplace the 8, - 8, ¢ i
o ¥ Oepon oty e J i - Uy terms in the third term

LoV o 32
A2 ) RPN * 50,0, G

Wth on w £ f

Viay,

oV

2
20 and Vi

Vi[ﬂ=0: »
0=0 59_,3&

=0
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Since very often the linear specification used involves only the first two
terms of Eq. (3.12}, the resulting error would be equivalent to neglecting the
attributes (82¥;/00,;0,)9- o from the specification of the model, which is a
problem that has already been explored. The previous discussion, however,
does not entirely apply here since one cannot reasonably assume indepen-
dence of the neglected attributes and the ones that are included. There is
little more that can be said about nonlinearities except, perhaps, that one
must exercise care whenever the curvature of V(#8,a) is felt to be important
over the relevant range of a.

3.1.3 Taste Variations

A type of nonlinearity that is olten used 1n demand modeling, consists
in letting the values of the coefficients of the attributes change with the value
of a. If, for instance, in a mode-choice model, a; represents travel time by
automobile and its coefficient 0, represents the contribution towards attrac-
tiveness of one unit of travel time (i.e, the “value” of travel time) it seems
reasonable to speculate that such a coefficient should depend on the socio-
gconomic status of the individual. In our case we could define the coefficient
as an increasing [unction of income, and thus we could use 0, (a; represents
income) instead of &; for a more realistic specification of the model.

These variations in the coefficients are sometimes called systematic taste
variations, because they are included to represent the differences among
people in the way they appraise the various components of the attractiveness
of an alternative. Systematic taste variations can and have been used in
MNL models since, as long as the coefficients of every attribute are linear
functions of @, the resulting specification will also be linear in 8. In another
type of taste variation that is often considered in demand modeling the
coefficients of the attribute vector are allowed to change from person to
person in an unpredictable way. Because of this feature, this second type of
taste variation is called random taste variation or, simply, taste variation.

To analyze random taste variations, it is convenient to represent the
specification of the model by [note the difference—in form only—between
Egs. {3.1) and (3.13)]

Uy = (0 + Ab)[a]en + o (3.13)

where @ is the parameter vector, [a],, is an » x I matrix whose entries are
either known constants or attributes (the jth column contains the attributes
appearing in the jth measured-attractiveness function), and Ad,, is the
fluctuation of the vector of coefficients around the population mean value
8, corresponding to the nth individual in the sample. Since the vector A8,
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is not observable and changes from individual to individual it can be included
as part of the error term. Thus Eq. (3.1 3) defines a random utility model with

V¥ = g[a] (3.14a)
and

§* = Af[a] + ¢ (3.14b)

If the elements of A# are MVN distributed with mean zero (by construc-

tion) _and covariance matrix E,,, Eqs. (3.14) define a MNP model with
covariance matrix

Xf=[a]'Z[a] + Z:. {(3.14c)

In some cases the malrix I,y may be known, but most often it is left
to be estimated, at least in part.

3.1.4  Parameter Estimabifity

In the last three subsections we discussed ways of avoiding errors in
the specification of models and enhancing their realism. Even for models
whose specification approximates reality well, however, there are instances
where the values of some of the parameters cannot be derived [rom data
because_the mode! fits the data equally well for different values of 0.

For instance, in the binary probit model whose specification is given by

Uy =(0, + 05) + 03a, + 1

Uz = 04 _IL 52: é ~ MVN(O, 051), (315)

it is not possible to estimate the values of 1, 03, and 8., because exactly

the same choice functions are obtained as long as 6, + 0, — 8, remains
constant.

The choice functions for this model can be expressed as

pr=0 (u) - q)(m
205 265 ’

pa=1-yp,,

which reduce to the same functions of a4, whether § = (91,92,93,94,55) or
0%, y) = (, 3,05, x + y+ 8, ~ 0, — B,,0,). Since parameter estimates #
and B(x, y) give an equally good fit Lo the data, it is impossible to determine
the correct values of x and y,and of ,, 8,, and 0,. As a matter of fact, with
the specification in Eqg. (3.15) none of the parameters in it can be detem:lined,
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because any combination ol parameters yielding the same value for 0/
J05(i = 1,2,3,4) also yields the same choice function.

In general, it can be said that whenever the choice functions can be
expressed as a function of a smaller set of parameters, ¢, related to the old
parameters by 8 = ¢'(8),

P(0,3) = P[6®).a], i=1,....L

the old set of parameters is not estimable because the specification in terms
of @ is entirely equivalent Lo that of 8; and even if " could be estimated,
# could not be derived from it.

Verifying the estimability of the parameters of « MNP model could be
difficult, since to do that it is necessary to analyze the choice [unction; and
with three or more alternatives, the choice function of a MNP model does
not assume a closed form. Fortunately, as was discussed in Chapter 2, the
MNP choice function can be expressed as

P(8,a) = Pr{U, > U, Vj # i| E(U) = V(6,a), cov(U) = ,(0.2)}, (3.16)

where P,{#,a) depends on # and a through V(6,a) and X.(8,a) only. Thus,
an obvious check is to make sure that there is no change of variable that
can reduce the number of parameters in the expressions for V and I.

Equations (3.7a) and (3.7b} of a previously discussed example can be
examined in this way. It is not possible to estimate X; and I, simultaneously
(assuming all of the elements of both of them are to be estimated separately)
because Eq. (3.7b) can be expressed as a function of a smaller number of
parameters. The same can be said of Eq. (3.7a), where the vector 8, was
added to the specification of the measured attractiveness. Any independent
constants that appeared in the model are made inestimable by the addition
of 8,. In the example given by Eqs. (3.15) either 8, or 8, could be omitted
with this test. A more appropriate specification would then be

U1=01 +93ﬂ1+61, (317&)
Uz = 0u+ &, (3.175)
& ~ MVN(O, 05I). (3.17¢)

Further scrutiny of the properties of Eq. (3.16) enables us to devise other
tests. For instance, if the same random variable is subtracted [rom the
attractiveness of all the ulternatives, the probability ol choice docs not
change, since the subtraction affects both sides of the inequality U, > Uj,
¥j # i. It was seen in Chapter 2 that if U; was subtracted from all the alter-
natives the MINP function could be expressed as
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wherg the right-hand_side of Eq. (3.18) represents the cumulative distribution
ft_lncuon of a MVN(Z, L) variate evalvated at the origin and Z and X, are
given by Egs. (2.16), which are reproduced below:

Z,=V, -V, j=1..,I-1, (2162)
COV(Z;,Z) = 65y — 63 — 05 + 0k, jk=1,...,1—1. (2.16b)

A prime in these ec_luations denoted the jth (or kth) element of a row or
column, when the ith one has been deleted. Since the choice probability
gepen]ds ol? ¢ and a through V and I, and these affect it through Z and
, only, the same check i : i
z7and 5 ecks that were applied to V and X can be applied to
Subtracting U, [rom the revised specification of th
_ e example defined b
Eqgs. (3.17) yields P o

Z, =0, -0 - 0a,, (3.19a)
var(Z,) = 20,, (3.19b)

and we see that 0, can be omitted from the specification since (3.19) can
be expressed as a [unction of three parameters only, 0, — 0, 8,, and 0.
The model can thus be specified as i

U, =6a, + ¢, (3.20a)
Uy =8, + &, (3.200)
¢ ~ MVN(8,0,1), (3.20¢)

with a lurther reduction in the number of parameters.

A:_lother transformation that is useful to check is multiplying the
percewed-attractiveness vector by a positive constant (ie., changing the
units of measurement) since that will not affect the choice probability. Thus
two MNP functions with (V,Z;) and (kV,k*E,) as arguments will yield the
same results, provided k > 0. An appropriate choice of & may reveal some

further estimability problems. For the example in E
' ) s.(320)and k = .
the model reduces to p gs- (3.20) an 1//8

U, = (93/\/0_5)”1 + &y,

Us = (04/4/85) + &3,
& MVN(D,I)

2
= As a consequence of this cheek ingi i
, and taking into account that E, js sy i :
can prove thal if Z; is not a N i it c: ‘ ] )‘T}me”'cs o
" g a function of a it can have at most /(I — 1)/2 estimable parameters
at do not appear in V. This means a maximum of onc free parameter in L, for binary probit
and a maximum of three for trinomial probit. ’
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indicating that one can use a model with two constants only:

U, =8,a, + &y, (3.21a)
Upy=0,+ &3, (3.21b)
& ~ MVN(O, I (3.21¢)

No further simplifications can be made to this specification, which on an
a priori basis should be estimable. Note that to perform these estimability
checks we never had to write the choice function, and consequently they
can be performed rather easily even for multinomial models. Close scrutiny
of V and E,, however, may not necessarily result in an estimable model
because a model that is a priori estimable may not be so with the available
data. In such cases we say we have multicollinearity in the data. If the data
set corresponding to Eq. (3.21) contains N observations in which all of them
have the same value for a; [a,), =a, n=12,...,I] the log-likelihood
function log L{f;,8,) can be expressed as

N
lOg L(03 3 94) = Z Pc(,,)(BS’ 941 a(n))
n=1

N

= ZI {®[(03a01 — 94)/\/5]}27%’{1 — O[(Osauy — /2],
which, since g, is constant, is 2 lunction of (3¢ — 6,) only. Thus, any
combination of &5 and 8, such that 0,a — 8, is constant will yield the same
values of log L{#) and cannot be distinguished with maximum-likelihood
estimation.

In real problems one will usually not have the time or the ability (in
cases with more than two alternatives) to test for multicollinearity by hand
and, as is done for regression, it is desirable to have an automatic check
during the calibration process. A reasonable way of testing the estimability
of a model consists of verifying that the log-likelihood function 1s strictly
concave in the neighborhood of 8, as in such case all points around @ yield
lower log likelihoods and there cannot be any combinaticn of parameters
yielding the sume value. This check is automatically done in calibration
codes, since they provide the inverse of the Hessian of log L(#), which will
contain some unusually large entries if either the model is not a priori
estimable or there is multicollinearity. The next section contains a computer
example of an inestimable parameter vector.

It should be remarked, however, that, rigorously speaking, the strict
concavity of log L(#) at # is neither a necessary nor sufficient condition for
estimability. As is discussed in the next section for the irue parameter vector
, to be estimable, log L(#) must be strictly concave at 8,; only then can
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we be sure that a strict local maximum of log L{#) will exist very closc t
C LO

8,.> Of course this is diffi -
: cult to verify bec:
is unknown, y because the true value of g,
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_We Now investigate the accuracy of the maximum-likeliho
This W1_11 be_done for random samples in detail and for ot
mechanisms in an abbreviated form.

) p]]ng p QCess and ensuing ca l‘l) i
dLlIB tle, zl(l]i . g l ratlo

od estimates,
her sampling

<2 Ay, Sy - C, @and @) can b 1 proce-
of an experiment (i, the) sampli(lq,gmalibrition pfoiiiz)rfi chllc:[i Ssputcomes
outcomes would change from experiment to experiment in ’an un ot
way, one can regard the attribute vectors, choices, and maximump]r'id“-:table
estimator as random variables* (A[l)'n .. ,A(n)a C(l s, Ciy and ](":)ethOd
values become known only after sampling and cal;brath’]g e MNPJ whose

_Thro}lghQUt this section we will explore the statistical properti model.
which will give us a clue as to the closeness of § and the trug ‘:tles of O,

8,. Specifically, it will be shown that und i 4 alue of @
o ) g erc is: ’
estimator of 6, - i, ertain conditions @ is 3 consistent
lim Pr{|® — g 1 _ '

wn Pril@—o<g =1 wve>o (322)

;Equatlon (3.22) simply staFes tl_nat the probability that @ differs significant]
rom_t?,, can be made arbitrarily small by increasing the sample sj el
gdem}-able property of cstimators because it ensures that whatever S;ZC- s
ilflrgtrazllr;t(_i ca];'l b'e oblained. The consistency property, however, ig n?tu:;z(r:'y
o e :\::{ BCtdltl-Se ]?q. (3.22‘) does not m'dlcaFe the magnitude of error thajt{
ey 1 € fr:acth_or a certain sarnple_ size; It only says that if n o
it - 1n ths section, thus, we WlIH a_lso explore the approximate dis:
ution of @ for large values of N. This will enable us to build approximate

COIlﬁdenCe ngIOD.S IOI‘ 6 d nd test llypOthCSES as CX[CIIS]\«E y 1SCn <]

3
. 11331;:2:1?;?“ venrly thatiflin E_QS.(B.zl) U,wasdefinedas U, = 0, + 0 + a, max((, 4,) +
e true vatue ot gno\l‘tstncl) concavity _of log L(8) at the masimum § would be miSlea&irT it
itis not known wi ; cr: negauve (positive) but'@, werc positive (negative). For MNp mocills
Clers i 1 cc.vﬂ,-;:n re dlllOl.lShIPS 51m|lnr to that between ¢, and 04 occur between Lhe “ -
nce matrix and those in (he ailractiveness veclor. param

4
We normaily use capi .

€ capilz :
take. y apilal letters for random variables and lower case for the valyes they

I\:‘

7

s D
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3.2.1 Asymptotic Properties of the Maximum Likelihood Estimator®

Let (X, --..X ) be a random sample from a distribution function
F(x|@,), where @, is unknown. Let us assume that @, is vector valued and
that so is the random variable X, which can have both discrete and con-
tinuous components. Define the joint mass-density function of X, f(x|8,), as

fix|8)=Pr{X' = x"and X" e [x",x" + dx")}/dx} - - - dx{,

where primes denote the discrete components of X, double primes the
continuous components of X, and [ the number of continuous components.
Then the likelihood of a sample (x;1),. - -, Xg) 18

N
L{xgy xw |9) = : f(x(,,;lﬂ),

which for convenience we abbreviate by L(x|#).°

We now state in the form of a theorem some basic results of maximum
likelihood theory which will be utilized in the sequel. The interested rcader
will find proofs of the theorem in standard probability and statistics books
such as Wilks (1962) and Rao (1965). Particularly noteworthy for its clarity
of presentation and conciseness is Theil's exposition (Theil, 1971, pp. 384—
397), which develops the theory for a one-parameter case.

Theorem 3.1 1f regularity conditions (a)-{d) held, the maximum-
likelihood estimator ® of @, [rom a random sample X =(X,... ., X)
of f(x{8,) has the following properties:

Properties (1) Tt is consistent.

(2) For large values of N it is approximately MVN distributed with
mean &,. B

(3) Tt is asymptotically efficient. That is, no other unbiased (with mean
0,) estimator @ can have a smaller covariance matrix for very large samples.
More precisely, as N — o, [cov(@) — cov(®)] is a positive-semidefinite
matrix.

(4) Minus the inverse Hessian of log L(x|#) at 8 = is a consistent
estimate of cov(®).

(5) For large values of N, —2[log L(X|6,)/log L(X|®)] has approxi-
mately a y* distribution with as many degrees of freedom as parameters.

5 The reader interested exclusively in applications of the MNP model may skip the body
of this subsection and read the summary provided in Section 3.2.2.

& For the rest of this subscction we depart from our convention in notation in two ways:
First, although the random variable X is vector valued, a boldface X will only be used to repre-
senl all the sample; and sccond, the notation L{x|#) is preferred to L{f) to emphasize thal
the likelihood value corresponds to a given dala set.

g -
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f{egu!arr'ry Conditions (a) The third derivatives of f(x|@) with respect
to the elements. of § Must exist in an open neighborhood of 8 ’
{b) The third derivatives of log f(.\']ﬂ) must be bounded: "

& log f(x|0)
36,0, 20,

< tyj(x)

with E,-[u,--.(X) < ;... for : . L )
bOrhoo\d ojrka(,. | < iy, for all combinations of i, J, and & in an open neigh-
{(c) The range of X must not depend on @ so that integration and

differentiation can be inter
crchanged : ; >
of 0, ged as shown below in an open neighborhood

v[,ffw---fj”w L(x[ﬂ]dx=j‘_mm---f_mw Vo L(x]0) dx.

r(zf rce(;ursf, m this expression, the integral operator should be visualized as
{dl)',) Een ing 2the summation operator for the discrete components of x
xL=Vilog f(X|6,)] musi bea positive-definite matrix.” W N

MI\E; the remain_der of this subsection we show that Theorem 3.1 applies to
Mr bemc;ldelks Zm'h ran(_:lom sampling and discuss how Conditions {a)-{d)
propertigs t:)cf ;1 1\;; a glmple way (Bouthelier, 1978, has investigated the
Seapomies of estimates, as well). The main results are summarized in
For a random sample of size N i ikeli i ]
btainc by sonmmes , the maximum-likelihood estimate @ is
N

max Z IOgPC(")(B! a(u)): (3233)

¢ n=1
which is equivalent to solving
N
max I1 Pr{C,, = S| A = 24, O = 0}

n=1

or, i joi I
» letting X, represent the Jomnt attribute and choice vector (ConAgn)
)2t

max T[] [fxon(5on|OVF (2] 0],

ﬁhere _f;(w'(x(,,,lﬂj represents the joint mass-density function of X and
,(84,] ) is the mass-density function of A,,. bothof them conditionglJ c;n ]

7
Actug g i V2
condiljfn:lsﬂ:i‘) \(\;e) (:]l;ll)d hzillvec to rl;;:qm]:e that E,[ —¥2 log f{X]8,)] be nonsingular because if
on - old, an be shown that E,[—-VZlo, = ’
which must necessarily be positive semidefinite. v e/txes] = o ¥otog 1100}

8
Ilthe log likeliho i i
od has multiple maxima there j i
! kel erels at least one solution i
1. That sclution is the maximum-likelihood estimator thatsaisfies Theorem
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Since A is independent of 8, the factor [ [¥-; [F4,(a.,;|0)] " enters the equa-
tion as a positive constant independent of @ that can be ignored, and Eq.

(3.23a) can be replaced by

¥
m;ix H fx“.,(x(n)ig)-
=1

Since, by definition of a random sampling process, the variables X, are
independent and identically distributed, Theorem 3.0 applies.” We now
check to see whether Conditions (a)—(d) are satisfied for MNP models.

We first note that

fx(x|0) = P(6,a)F (a)

and that consequently the derivatives of log fx(x|6) and log P(6,a) with
respect to @ coincide.

Regularity Conditions (a) Since the choice lunction can be expressed
in terms of a MNP [unction

Pc(ea a) =P [V(Bz a): 26(0: a)] 3

which has finite derivatives if £; is positive definite [as inspection of Eq. (2.15)
shows], P.(6,a) will satisfy Condition (a) if the third derivatives of V and
I; with respect to @ exist. Thus, Condition (a) will be met if E, is positive
definite and the third derivatives of V and X; with respect to @ exist for all
values of a and . In cases where I, is not positive definite for all the values
of # but there is an open domain defined by 8., and 8, (cf. Chapter 2)
in which ., is positive definite, Condition (a) will be met if 8, belongs to this
domain and V and Z; are three times differentiable within the domain.

(b) Since log(-) is analytical if its argument is positive, the derivatives of
log P8, a) will exist if those of P(0, a) exist, as long as P{f,a) > 0 [Condition
(c) below ensures that P (#,a) is always positive]. Thus, an argument similar
to the one used with Condition (a) cnsurcs that if the fourth derivatives of
V and X, with respect to 6 and a exist, and E, is positive definite, as specified
in Condition (a),

2*log fx(x|0) @' log P.(6,a)
20,00,d0,  ¢0,00,00,

exists and is a continuous function of @ and a.

® Although in a random sampling process F  (a) coincides with the population probability
mass density function of A, F(a), the theorem requires only that the distribution of A, be the
same [or all the sample points. This fact will be used in Section 3.2.2 when we analyze nonrandom

sampling strategics.

3.2 Statistical Properties of MNP Estimators 101

Ifthe Feas.ible val_ues pfA are contained in a compact (closed and bounded)
sel ./, the third derivative will be bounded in the compact set defined by

% = |(8,a):]6 — 6| <dacs) for some § > 0

for any given value of the choice ¢.
Thus we can write

& log P.(0,2)

Y < Upalc) <
26,00,00, | < “in(©)

am_:i since the set of t;p{c)s only has a finite number of members it has a
finite upper bound, Hije > i lc).

Obviously. the_n EvfulX)] < i and Condition (b) is mel.

‘T-hus, 4 sufficient condition for Condition (b) is that X, be positive
definite, the fourth derivatives of V and E. with respect to ﬂgaud a exist
land th'flt the feasible values of a are conlained in a compact set Howevera
{r as \fwth C_ondition (a) there is an open domain defined by and & ,
in Wth!‘l E5 Is positive definite, it suffices to verify the diﬂerentiall;;l]ity conlcli:ilf
tions within the domain as long as 8, belongs to it.

{c) Since

Fx(x[0) = P,(6,2)F(a),

the range of X = (C, A) will be independent of @ for all the feasible values of
8(0..., < 0 < 0.4, as long as P,(0,a) is strictly positive for all values of ¢ and
all felaSJble values of a and #. This will happen if V and E. are finite (.
positive definite, too) because then the choice probability is ijositive for aﬁ
Ihe_ alternatives. This can be seen from Eq. (2.15) because if V and ¥. are
ﬁmtg and X, is nonsingular the integrand is positive. Under these condi?ions
the interchangeability of integration and differentiation follows inasmuch as
VoL(x|8)is cggtinuous [ provided fy{x|0) satisfies Condition (a)].
v For Co-ndmon' {c) to be met it is thus sufficient that the specification of
and Z‘? gives finite values whenever a and @ are finjte (a condition implied
Eg 1Eht?tdlﬁ"erentialr)ility assumptions) and that 0, and all feasible values of a
inite.

(d) Tt is not easy to derive a sufficient condition to ensure that

—E¢ 4[ Vs log P(8,,A)] (3.24)

;SI\: posnm?—deﬁnile matrix for an arbitrary MNP model. However, it is

sufﬁggs posmble' to define a necessary condition and, for binary probit, even a

" lent condlt_lon. Qne can also _be_ reasonably sure of Condition (d) by
ecking the calibration results. This is explained below.
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Necessary Condition For expression (3.24) to denote a positive-definite
matrix it is necessary that @, be a priori estimable since otherwise the second
directional derivative of log P.(@, a) will vanish in at least one direction, A#,
for all values of a and ¢:

AB[Vilog P(8,2)] A0 =0  V(c,a);
and if that happens:
AB{—E; s[Vilog Pc(8,A)]} A8" =0,

which indicates Eq. (3.24) is not positive definite.

Sufficient Condition For Eq. (3.24) to be positive definite it is sufficient
that log P.{6,a) be a strictly concave function of &, since then its Hessian is
negative definite for all values of ¢ and a, and (3.24) is positive definite. In
Section 2.5 we demonstrated the concavity of log P(f,a) for binary probit
models with specifications 1itxltg/i1/1 the parameters.

It is now shown that if, in addition, the binary probit model is estimable

and there is no multicollinearity, i.e., the distribution of A is not degenerate,
cxpression (3.24) is positive definite.

If the a priori estimable choice functions are expressed as p, = ®(fa")
and p, = ®(—0a") (0 and a are of the same dimepsion, r, and do not have any
repeated elements) we have

Vilog Pi(0,a) = a'[ V2 log ®(x)|, - £pa7 2,

and, since V2 log ®(x) < 0, AQ [ V; log P;(6, a)] AG” will vanish only if AGa™ =
0. Thus, for expression (3.24) not to be a definite matrix it would be necessary
that Pr{A8A” =0} = 1 for some A # 0, since otherwise there is a finite
probability that — V3 log P«(#, A)is positive definite and its expectation would
be positive definite. But for Pr{A0 AT =0} to equal 1 for some A8 #0,
the probability density of AT would have to be concentrated in a hyper-
plane of % defined by A# AT =0, in which case there would be multi-
collinearity. We can rest assured that this does not occur if the data attribute
matrix, (a,,, - - ., &), is of rank r.*°

Unfortunately, for the general MNP problem it is not possible to derive
a similar sufficient condition because the concavity of the log-MNP
function has not been established. However, the Hessian of the log-likelihood

i=1,2,

10 1t is easy Lo show following the same arguments that if the specification of a MNL model
is cxpressed as V = @[a], where [a] is an # x I matrix with zeros on the first column, whose
enlrics are either known constants or elements of a, a sufficient condition for estimability of a
MNL model (condition d} is Pr{A[A] =0} # 1,YA@ # 0.

3.2 Statistical Properties of MNP Estimators 103

[unction,

Vi log L(x[#) = V2 log L(®),

;i a g?;)vd_ approximation for NEX'[V,? log f+(X|6)] since the former is the
m ol N independent identically distributed observations of V7 log f; (X |6);

consequently, a por}singular Hessian over the domain of reasognagiexvaluta)sj

S]f 0 I—IIS a _strong mdllcatlon t_h;.it Condition (d) is satisfied, (remember that if
e Hessian is nonsingular it is negative definite at 0, [cf. footnote )

. 0];1]_ tlll‘ﬁiang:es: where B takes a reasonab!e value (ie., we know il is .c]ose

0 Ot' ay be dpp-roplngte to check t}_le strict concavity of the log-likelihood
nction at @ only; this is 4n easy thing to do since the output of a MNP

code includes —[V2log L(9)]~ ', which should be positive definite.

3.2.2 Summary and Example

Under the regularity conditions defined b i

. th elow, the maximum-likelih
estimator @ ol'a MNP model calibrated with a random sample!! h Ozd
following properties: ’ e

(1) It is consistent.
(2) Itis asymptotically MVN distributed with mean f,,.

( ) It iS asymptotically e]lic'en no other esti -
A 3 lent t - c I
1 I ) ( I estimator has a SlTlElHe Co

_ 2 ’ - _ - .
(@) —[Vilog L{x|6)] " is a consistent estimate of cov(@),

(3} —-2[log L(X|0,)/log L(X |®)] s ically #Z, distri
I is the dimensionality of g, O Hymptotically zi distributed, where

Sufficient Regularity Conditions

The discussion regarding Conditions (@)—(d) of Theorem 3.1 in the pre-

YIOUS 5 1b ECtion can h C()“apsed ] Wlng Set O[ SLI“ICIEIII IBgUIaI 1t

(1) The value A
bounded.!? s of the attribute vector a that can

(2) 6, must belong to the feasibili :
e ty domain defined ) .
Ounin < 0, < O35 (cf. Section 23.1) 76 Y nin and Oy

actually occur are

11 =
wnd For. m.odels with ranked allernatives, the same analy
Nder a similar set of regularity conditions
followed. ’

12
NO[G lhﬁ[ Condilion [1) P } i
e lu i 1l 5 i dum
o , | - recludes 1€ inclusion it a2 model o Ny

sis shows that Theorem 3.1 applies
as long as a random sampling procedure is stjll

attributes taking
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(3) V(0,a) and X(6,a) must be four times differentiable functions of 8
and a, and X:{f),a) must be positive definite for all the feasible values of

0,0.,.,<0<8,,, and a.

(4) For large samples, — V3 log L(x|#,) must be positive definite. This
can be verified by establishing the nonsingularity of V3 log L(x|®), empiri-
cally, over a range of # that would include 8,. Of course, if one is reasonably
sure that 8 is close to #,, checking that V} log L(x | f) is negative definite may
be enough. For binary probil a more rigorous test can be carried out (see
the discussion in the previous section).

A short trinomial probit example that illustrates the ideas in Sections
3.1 and 3.2.1 is presented next.

Example We reconsider at this stage the example that was provided
in Chapter 2 (Sections 2.3.2 and 2.4.2) and the data set contained in Table 2.4.
If the specification of the model was inadvertently set
Vi = —(0, + 8))a,,
V= —(0, + 03)a,,
Vi = —(0, + 0)as,

with
1 8, 0 '
E¢= 03 1 0 ]
0 0 1

the parameter vector # = (#,,8,,8,) would not be estimable because it is
possible to express V and X; as a function of ) = 8, + 6, and &, = 8, only.
Since regularity conditions (1)—(3) are met [it is reasonable to assume that
for the population under study 0 < a; < ay,, i = 1,2,3, and that therefore
Condition (1) applies} the model is estimated with the hope of checking
regularity condition (4) a posteriori.
After a few iterations the following values are obtained:
0 =(0.12,0.12,0.48),
log L(0) = —33.895,
and —1332 —133.2 —10.19
Vilog L(0)= |—1332 —1332 —10.19].
~10.19 —10.19-10.83
The Hessian is obviously singular indicating that regularity condition (4)

is not met and that there might be an identification problem. In existing
computer packages the output includes an estimated covariance matrix of
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© which is simply minus the inverse Hessian [see Theorem 3.1 Property (4)]
In cases like these an attempt to calculate [VZlog Lyt v:rould yieJI(d aﬁ
er’ror message, but_due to computer round-of error in the calculation of
?5 log L(8) ca]pulatlons sometimes proceed yielding another approximatel
singular, matrix containing some unusually large entries. In’ the CDC 6403
computer where these calculations were carried out we obtained

2 ) 17592 —17592 —0.002
—[Vilog L)'~ | -17592 17592 —0.002 | = cov(@®),
-0002 --0.002 0098

(\:vhere in addition to the sh_]gularity of the matrix and its large entries one
an notice the perfect negative correlation between the first two elements of

©. This, of course suggests a [uncti i i
This, , nctional relationship betwe
which in our case is b e these clements,

©, + 8, = const,

corresponding to an estimability problem.

With this evidence one can u i i
suaily correct the specificatio
In our case setting P " ofthe model

Vr=‘—91T:, ]/i:—ngz, V3= -0,T,
and
T 8, 0
=0, 1 0
0 0 1

resulls in an estimabie problem s i i
: a
o P (same as in Sections 2.3.2 and 2.4.2) that

6 = (0.24,048),
log L(f)= —33.895
and
cov(®) ~ 0.002 —-0.004
—0.004 0.1

of tlS;nce regularity condition (4) seems to be met (the log-likelihood function
is problem seemed well behaved and strictly concave throughout) the

Previous resull can be adopted. )

s eWhenl mstead of _the 50 data points ore uses many more with the same

Pecification, according to the consistency property, we expect the entries



106 3 Statistical Aspects of Multinomial Probit Model Calibration

of the covariance matrix of @ to decrease. This, indeed, happens since for
a 500-point data set the results were

8 =(0.27,0.51),
log L(f)= —338.85,
and

0.0002 —0.0004
—0.0004 0009 |

cov(@) ~ [

Since the regularity condition are met, assuming that no specification errors
have been committed, the estimator & with 500 data points (and perhaps
the one with 50 too) is approximately BVN distributed with mean 8, and
covariance matrix as given above. Property (3) ensures that cov(@) is on
the average the smallest matrix we can get with 500 data points. H

3.2.3  Properties of Nonrandom Saniple Estimators

When the sampling process is not random, Theorem 3.1 must be recon-
sidered. Assume that we are sampling at random [rom a subgroup of the
whole population of individuals, Under such circumstlances the sampling
distribution of A will not coincide with the population distribution of A
and the sample and population distributions of X = (C, A) will also differ.
This, however, makes little difference in our case since Xy, ..., Xy, are
still independent and identically distributed, and, as long as the regularity
conditions are met, Theorem 3.1 still applies. When the subgroup 1s homo-
geneous (A = a), regularity condition (4) may cause problems, however,
since even for an estimable problem one may have multicollinearity, and,
as happens in regression analysis, there may be large variances associated
with ©.

Stratified sampling is another instance where the sample distribution of
A does not comcide with the population, but where unlike in the previous
case Theorem 3.1 does not seem to apply because Ay, ..., Ay (and con-
sequently X, ..., X ) are not identically distributed.

Imagine, however, that instead of predetermining the number of obser-
vations in each stratum we only decide the desired fraction of the sample
that must be assigned to each stratum ( f;, will denote the desired [raction
of observations in stratum k) and that the actual number of observations is
obtained by sampling from a multinomial distribution with probabilities
Sy For large samples the actual fraction of observations in each stratum
would then be relatively close to the desired fraction, and, [urthermore, if

we visualize the assignment of observations to strata as part of the sampling
mechanism leading to Ay, ..., Ay, the random variables (A, ..., Aw)
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would be independent and identically distributed: therefore Theoremn 3.1
wopld apply. Of course, @ should be interpreted as a ran,dom variabl;a
which to be observed requires determining the number of observations i :
each stratum from the desired fractions Juy» In addition to gatherin th:
d;_lta and carrying out the estimation procedure. The procedure just descg'b d
will be calilled a random stratified sampling process. : e
‘ Multicollinearity problems will not arise with random stratified samp]
11? the strata and corresponding sampling mechanism are adequately %gf
}s)ng:s;i. Ats a matter of fact, a proper sample design will usually result in
o i:hl:::f:c j;gn a random sample since more observations can be
ﬁxeénfgerlsztalslefosr wh;ch_ the' number of observations within each stratum is
= zj\m'p € It can be shown that for sufficiently large samples
eorem 3.1 also applies. All one has to do is redefine X in such a way that
the stratified sampling process reduces to a random sampling of X syTh?s
can be C?One by letting X represent the attributes and choices of s;:veral
observations from different Strata. For example, if we have two ;:lasses with
30 and 6_0 observations each, we can define each observation of X 1
observation from class 1 and two from class 2, so that o

X] = (a(l)s C{l)), (3(3”,('(3”), (a(32), C(32)J,

XZ = (a(z)’ C(Z))J (a(33)s C(j 3)), (3(34,, C(34)),

X350 = (Ag0), Ciaoh (3(59}, Cis0)h, (as0y» Cs0ph

wll:erc we have assumed that observations 1-30 belong to class 1 and
ge s;;‘iflll_ondﬂf% to class 2. Thle stratified sampling mechanism can then
deﬁnind ;eina: ahran'dom sampling of 30Xs and Theorem 3.1 applies. Re-
penin egwe nOwuc: way, however, changes the meaning of a large sample
Such e ow geqm;e allarge number of observations within eqch subgroup.
one e chnition bma €5 large samples harder to come by, especially when
™ “)r/ le g;oups. In order to be able to relax these requirements
restricti);ns Ono:)ttll1 € necessary to analyze the problem in depth to place
T might be difficalt (o do, bat 11 3 rscmer - 10T 3! 4PPL:
_ R It is reasonable to e i
g]lg::;?:jﬁ; l(ajetvlveen this estimal_or and the random stratiﬁxe%e‘s::uz;lﬁ’nglgﬁi
o ith desired sample fraction Jw- equal to the actual sample fractions,
may apply Theorem 3.1 nevertheless,

Choice-Bused Sampling

E F ojr cho_ice-based sam p;es_ that are estimated with maximum likelihood
Q. {2.7a) in Chapter 27 it is casy to show that Theorem 3.1 will appiy



108 3 Statistical Aspects of Multinomial Probit Model Calibration

under the regularity conditions at the beginning of Section 3.2.2 if log P{0)

is a four-times-differentiable function of 4.
This is always true when P,(6, a) is four-times differentiable [as happens

if Condition (a) is met] because (see Section 1.2)

P{8)= [ P(0,0)F(@)da,

where F(a) is the population distribution of A. Thus, the regularity conditions
at the beginning of Section 3.2.2 also apply to choice-based samples calibrated
by maximum likelihood.

Manski and Lerman (1977) showed that when the proxy function log
L,(0) is used [see Eq. (2.7b)], and under similar regularity conditions,

the estimator of §,, ®,

(1) 1is consistent,
{2) is asymptotically MVN distributed with mean @,, and
(3) the negative of the inverse Hessian of the proxy function is a con-

sistent estimate of cov(@,,).

\

The same remarks that were made about stratified and random stratified
sampling apply here. This is particularly important in this case because in
choice-based samples the number of observations per alternative is usually

determined a priori.
On the other hand, the number of strata (i.e, choices) is so small that

having many observations in each stratum is not a very restrictive condition.

3.3 Model Updating

If a model has been calibrated with a data set containing N observations -

and subsequently N’ more observations are made available one could im-
prove the accuracy of the estimates by recalibrating the model with the
combined data set of N + N’ observations. This is not always possible,
however, because in many instances the old observations will not be available
and because even if they were, calibration of disaggregate demand models
(MNP models in particular) is still such a computer time- (and memory-)
consuming operation that shorteut calibration procedures using only the
new data, and the results of old calibrations, would be attractive. If, after
calibration of the model with new data, we can find a way to combine the
results of the old and new model to yield a combined, better model we would
have succeeded in developing a shortcut recalibration process.

The information corresponding to a calibrated (old) model consists of an
estimate §,,, and the approximate distribution of the estimator: 0 4y ~
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MV Bura), i
M OI;E?;; ZOF(GDM)], 8, Lgmknown. Of course, different results wi in general
i fom a new data set. These wii| inclnd i j,. .
ed from . e an - ¢
and the distribution of the estimator: another estimae, s

O,... ~ MVN[0,, cov(®,,,)], 0, unknown.

iget alé;)ther Fnbiased estimator, but some of these combinalions might be
ess cllicient (ie, have a larger variance) th igi
, at one of the o ime
Therefore, one must proceed carefully. il estimators
One/ﬁ;:;s;;n&?znﬂkga (19_76) proposed an expression for the case of
45¢d on Bayesian statistical postulat d
(1976) extended it 1o the case of e Exprossion we o
several parameters. The i
about to derive is the same as th : e researchons e
¢t € one proposed by these researchers b
- - . Ut
he;e 1t is sl}own, by cl_assncal statistics only, that the derived updated estimate
an s_:ovarlgnce matrix can be interpreted as an approximation of the MLE
and its variance if the whole data set had been used.
erl(j)hlgogo::;l thuts, tl}i to cholose 0 so that it approximates the maximum-
imale that would have been obtained if th
_ ! : . e sampl
con'ét_)med prior to calibration. This is done as follows: mples ha been
nce by the way MLE works the estimates of cov(®) given in the output

represent —[ V2 log L(8)] ! .
pansion yield[s o 108 L™, for values of ¢ near foa. @ Taylor-series ex-

IOgLD(B) ~ ]Og Lu( old) - %(0 - gold)[cov((:)nld)] -1 (8 —_ 6nld)T1 (3253)

(\jvhere we ha\lfe talken into account that Volog L,(8,,,) = 0: the subscript “o”
e;otgs tl}‘e ,}1k<.311hood function corresponding to the old data set and th
subscript “n . w;!l be used below for the new data set. )

The log-likelihood [unction of the new data set can be similarly approxi-

mated for values of ¢ near ¢

log L,(6) ~ log L,(8,.,) — L(0 — Bow) [cov(®o, )] 16 — 8,7, (3.25b)

F:aChSmbce the .Iog—likelihoc')d function is a sum of terms corresponding Lo

e observation, the qu-hkehhood function corresponding to the combined

a set can be approximated for vajues of 8 close to both .. and g by
new old

]Og L(o) = log Lo(é(fd) - %‘(0 - gﬂld)[cov[éold)] _1(0 - énld)T
+ IOgLn(Gnuw) - %(0 - ancu')[cov(énc\v]] 71(0 - Bncw)T' (326)

E . . :
quation (3.26) will be valid only for some values of @ (close to both 4

and §_ )i j i :
oia) 1f the values of v and 0, are reasonably close: the consister;é;

Property of MLE ensures that this will happen if N and N” are large
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We now find the value of 8 that maximizes the right-hand side of Eq. (3.26)
and use it as an approximation to . Set the gradient equal to zero:
0=VlogLl(®)~ —(0 — éold)[cov(gold)]—l -0 - 5new)[00"(@ncw)] L
Rearranging some terms one has
@ — aold){I:C‘:)"'((:)alcl):r1 + [COV(Gncw)]_l} 2 Boew guld)[cov(éncw)]_l
or

a = Ar)ld + (éncw - go[d)[cov(énew)] B 1{[cov(®o[d)] ot + [Cov((:)ncw)] - 1} - 1’
(3.27a)

which is an approximation for the combined sample MLE.

The variance of © is approximately given by the negative of the inverse
Hessian of Eq. (3.26), which, since it is the sum of two quadratic forms with
constant Hessians, is !

cov(®) =~ {[cov(@,,)] ! + [cov(®,..)] oL (3.27b)

Equations (3.27) could be applied recursively to more than two data sets
in a straightforward manner, but this is not necessary because simple direct
formulas exist. Letting k denote the data set and K the number of these, §

is the solution of
K
0=V,log L{0) ~ — Y (6 — 8)[cov(®)] 7,
k=1

and the estimate of cov{®) is given by a second application of V, to the
right-hand side of this expression:

K -1 .
cov(@) =~ { Y [cov(@k)]“l} i (3.28a)
k=1
Solution of the likelihood equation yields
k
B ~ { Y gk[cov((:)k)]"}cov((:)), (3.28b)
k=1
which coincides with Atherton’s expression.
Example For a binary probit gap-acceptance study such as the one
worked out at the beginning of Chapter 2, data from two different inter-
scctions were gathered and both the critical gap T and its variance o7 (see

the beginning of Section 2.1) were estimated for five movements [left turns,
right turns, etc.; see Daganzo (1978b)]. Then, the whole data set was used to

due 1o either the few observati
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Tabie 3.1

Summary of Results of a Binary Probit Gap-Acceptuance Study"

) P_a_ramctcr Vector Definition § = 6,:0,)
= [mean criticat gap, T (sec); variance of critical g4p, o (sec?)]
* B

Number of
Traffic stream obscrvations

@
(=]
2
@)

Lefl onto LeConte 40 (8.40,35.68) [ 222 1256

T 1256 522 ]
Left onto Virginia 73 (6.29,6.66) [0.47 1.10

’ 110 817
Straight across Virginia (Eastbound) 48 (6.22,4.24) [0 69 0.60

| 060 5.09
Right onto LeCon(e 157 (6.03,7.17) [0'23 0.07

’ 0.07 556
Straight across Virginia (Westbound) 63 (5.96,4.79) [0.42 0.35

' 0.35 444
Total of several intersections 451 (6.4.7.8) [0-08 013

013 1.78
“ Source: Daganzo, 1978b.

Observations) the results should be reasonably close.

Formulas (3.28) are appli i i
_ . pplied and the intermediate calculati i
Outin Table 3.2. From those tesults one obtainsg o are carried

N

and § (6.2,5.16).
The slight disagreement of these resuits with the ones in Table 3. may be
Ons 1 some of the data sets {in particular the
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Table 3.2
Model Updating Calculations®
51— A A1
Traffic stream [cov(@] " [ covi®}]
0.52 —0.013 (393; —003)
Left onto LeConte —0013 00022 ;
irgini 206 —041 (16.53; —1.4)
Lelt onto Virginia _041 018
63 —-0.19
irgini 9.32; —0.26
Straight across Virginia (Eastbound) [_ 0.19 0.21:| (! )
[ 434 —0055 (26.04: 0.96)
Right onto LeConte | _o0ss o1 ;
258 —0.20
irgini 14.42; —0.06)
Straight across Virginia {Westbound) | 020 0_24] {
[ 12,13 —0.87:| (70.24: —0.79)
Sam | —087 081

2 Data from Table 3.1.

left-turniﬁg stream onto LeConte) or to a significant vgriatlon in critical
gap from intersection lo intersection; in any case the differences are per-

fectly acceptable for a practical application. W

3.4 Goodness-of-Fit Measures and Tests

3.4.1 Confidence Intervals and Hypothesis Tests

Since for a model satisfying the regularity conditiolns 0 is approximately
MVN distributed with mean 8, and covarianc; matrix )2 (“_fe use X, z;s ?
abbreviation for the estimated covariance matrl)f of' ) any hne_ar C({;mb in -
tion of ® will also be approximately MVN distributed. Lettmgh ]'fl ;; !
arbitrary matrix of constants with as many rows as parameters, the I
combination @A is approximately distributed as follows:

BA ~ MYN(@G,A, ATE,A).

Consequently, il ATE,A has full rank the quadratic function of QA dEﬁTig
below has approximately a > distribution with degrees of freedom equa

3.4 Goodness-of-Fit Measures and Tests 113

the dimension of @4, d (see Appendix Q):
(OA — 9,ANATZ,A) " H(BA — 8,A) ~ 42,

and it is possible to derive confidence regions'? for the linear combination of
6, 0,A. Since we can write

Pr{(OA — 6,A)ATE,A) {(OA — A <7 . d=1—g¢ (3.29a)

where y3_. , represents the (1 —o)100 percentile of %ty the guadratic
equation in @A, below, defines a (1 — o} confidence region for §,A:

(6A — BANATE,A)1(OA — A <72 . . (3.29b)

Furthermore, since £, is positive definite, (ATE,A) ™1 is positive definite (see
Appendix A), and Eg. (3.29) defines an ellipsoid in 4 dimensions.

By selecting the right matrix A, one can derive confidence intervals for a
combination of parameters. For instance, if A = I, Eq. (3.29b) yields a con-
fidence interval for 6,, whereas if A = (1,0,0,0,...,0)7, Eq. (3.29b) gives a
confidence interval for the first component of 0.

In general, the ith column of A should correspond to the ith parameter of
interest (say, #;) with all the elements zero except the jth one. There should be
as many columns as parameters in the confidence region.

Equation (3.29%) can, of course, be used to test hypotheses since a null
hypothesis H, :0A = 0,A (,A is a known vector of dimension d) can be
rejecled at the « significance level ift4

(FA — 6,A) [ATEA]0A — 0,AF = 2, (3.30)
Since, under H,, the left-hand side of Eq. (3.30) is an observation from a

%y variable [see Eq. (3.29a)] the null hypothesis will be rejected when it is
true 10029 of the time.

It is also possible to test certain hypotheses by using Property (5) of
Theorem 3.1, which states that f H, is true (H,:0 = @,),

2 log[L(@®)/L48,)] ~ 72,

where » is the number of parameters. Therefore, the null hypothesis can be

ejected at the o level if

2log[ L)/ LAY = 72, .. (3.31)

A - x)100%, confidence region for a parameter #,A is a region in the g4 spuce (defingd
45 a set function of 8) that will cover 0.A {1 — %}100°; of the time if the cxperiment of obtaining
¢ and caleulating the set function is repealed many times. Thus, if 1 — 2 js close Lo unity. we
can be feasonably sure that 8,A is contained in the region,

' The tevel of significance gives the probability that H, is rejected given that it is true.
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Although the left-hand side of Eq. {(3.30) with A = I and the left-hand side
of (3.31) do not necessarily coincide, they are very close for large samples and
either test can be used. This can be seen with a Taylor-series expansion about
fi of Eq. (3.31). If we neglect third- and higher-order terms (which is reasonable
for large samples because then @ ~ 8,), Eq. (3.31) becomes

2[log L(B) — log L(8,)] ~ 2log L(§) — 2log L(d) - 2V,log L(8)(6, — )
— (0, — O[Vilog LG, — 0 = 71 ..,

which, since V, log L(8) = 0 and V2 log L(#) = — £, !, establishes the approxi-
mate equivalence of Eqs. (3.30) and (3.31) for large samples.

It is also possible to derive an equivalent of Eq. (3.31) and Property (5) in
Theorem 3.1 when fewer than » parameters have to be tested. This equivalent

is

-2 log[L(g)/L(gd)] = Z:l&—c(. d» (3'32)
where 8, is the value of @ that maximizesﬁthe log-likelihood function subject
to the restriction that the components of 8 that correspond to the parameters

that are being tested be set equal to the tested values; as before, d is the

number of parameters tested.

Application of Eqs. (3.32) and (3.30) is, however, still equivalent and since
calculation of 8, is rather expensive in a MNP model (it requires a second
calibration) we recommend using Eq. (3.30} for testing hypotheses.

Example We shall obtain a 90% confidence region for 6, and &, for the
example in Section 3.2.2. In additicn, we shall test the hypothesis H,:8,, =

B,s-
The results of the calibration process were
0.0002 —0.0004:|

= (0.27,0.51) L= [_0_0004 0.009

To obtain the confidence region we set A =[3 {]in Eq. (3.29b) and obtain
5488 244 |/0.27 — 0,

< X302 = 461

244 122](0_51 — 92) = Yo9,2 61,

which is the equation of the interior of an ellipse centered at (0.27, 0.51). The

confidence region is plotted in Fig. 3.1.
Testing H, is equivalent to testing H,:8, — 8, = 0 and we use

AT=(1,-1)

since then 8A =48, — 01, as desired. The rest of the process is straight-
forward; we may use Eq. (3.29b) for a confidence interval and/or Eq. (3.30)

027 — 6,,051 — 92)|:
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08
05k
s, 10.27, 0.51)
0.4l
oz}
0.0 I 1 1
00 0.2 a4 06

0,

Fig. 3.1 907 confidence region for a two-parameter binary probit model.

for a hypothesis test. Doing the latter with §A = —024. §.A =0 ang
d =1, we obtain the test statistic o ,
0.0002 —0.0004 m

(—0.24 [ 1, -1
) &=D —0.0004  0.009 _1)]|=92%

= (024)* x 100 = 576 > 32, , = 271,
and the null hypothesis can be rejected. W

As in 'regltess_ion analyses, tests of whether the coefficient of a certain
attribute is sxgqlﬁcantly different from zero can be used to help decide
whether the attribute should be included in a model on the basis of statistical

ﬁt. In Section 1.6 we discussed that and other criteria for attribute inclusion
in models.

342 G oodness-of-Fit Measures

We now review measures that can be used to ascertain the overall
goodness of fit of MNP models. These measures are similar to the correlation
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coefficient of regression analysis in that they take larger values the larger
the explanatory power of the attributes in the model and have a minimum
value taken when the attributes do not explain anything.

A perfect-fit model from a forecaster’s point of view would consist of
a choice function P4{#,a), that could predict perfectly the choice of each
observation in the data set, i.e., .

Pcm(ﬁ,a(,,)) =1, n=1,...,N.
This would be analogous to a multiple-regression model in which all the
observations fall on the regression plane and the dependent variable can,
thus, be perfectly predicted.

Note, however, that for this to happen in a regression model the variance
of the unobserved disturbances has to be very small and the model must be
correctly specified. In MNP analysis the same thing occurs; for a perfect
fit we would need a perfect specification and X; — 0. Since even for a perfectly
specified model I, may be substantially different from zero we should not
be discouraged by imperfect fit since the pseudocorrelation coefficients we
shall introduce are not indicators of model correctness, only of fit to the
data.

A logical candidate for an indicator of goodness of fit (i.e,, high data
probabilities) is the log-likelihood function itself, log L{f). This indicator
is always negative and approaches zero with a perfect fit, However, a model
that has been calibrated with much data will usually exhibit larger log-
likelihood values, which makes it difficuit to compare models calibrated
with different data sets. Some normalization of it would seem desirable.

The following approach seems reasonable (see Tardiff, 1976, for a dis-
cussion of the binary case). We calculate the highest log-likelihood that
could be obtained from a model excluding all explanatory variables {(although
with as many parameters as necessary), and compare that wilth the log-
likelihood of our model. The difference will be the improvement in log-
likelihood due to the explanatory attributes.

Before proceeding, though, we must pause to prove a lemma and suggest
a conjecture which will enable us to calculate the maximum attainable
likelihood of a model without attributes, by hand.

Lemma 3.1 Forany random utility model, the implicit function theorem
of calculus holds between the set of finite reduced attractiveness vectors,
V=(WV-V,VKh-V,...,V— V) and the corresponding image set of

reduced choice probability vectors, p’ = (p;,ps....,pP;} provided that for
every alternative i
ap; ap.
0<a¥/:_<oo and —oo<6‘;;<0, Vi #i
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; P];-pof The fundament_al theorem on implicit functions holds if the
Z::cc: 1an of the transformation p'(v"), |b(p’)/b(V’),, is finite and different from
Consider t_he .]iacobian matrix of p(V). By the hypothesis of the lemma
we klzc?wlthat its diagonal entries are strictly positive, the off-diagonal entries
are strictly negative, and all of them are finite Further
' . more,
add up to zero since ;= p,(V) = 1. 1% the fow sums
Since p = p(V) can be written

(P1.0) = p(O, V)

the Jacobian matrix of P'(V') is obtained by deleting the first row and column
of ¥(p)/¥(V). The elements of this matrix, 3p’)/d(V’), have the same proverti
as those of h(l?)/b(-\’), except the row sums are strictly positive. propertes
_F_or a matrix with this structure the points in the Gerschgorin disks have
positive real parts, and consequently, all the eigenvalues must be different
from zero, ruling out a singular Jacobian matrix. Since (he Jacobian is also

finite (all its elements are finite) implici
the theorem on implicit functi i
and the proof is complete. M ’ ctions applies

Tms lemma is a necessary condition for a well-behaved one-to-one
mapping between the set of all possible reduced-choice probability vectors
and r_educed—attractiveness Vvectors to exist for a given random-utility model

Su_'lce the Iemma holds for any MNP model with a positive deﬁnité
covanan‘ce: matrix [Eqs. (2.37 and 2.38) and the ensuing discussion show that
the condition on 6p:/EV; specified in the lemma is satisfied] it seems rea
able to put forth the following conjecture. o

Con]ecturg 3.1 For a MNP model with a positive-definite covariance
matrlx,_ there is a one-to-one relationship between the set of 21l finite reduced-
attract}veness vectors and the set of all reduced-choice probability vector
for which ali the probabilities (including py) are different from zero. ’

The following fact, in conjuncltion with Le
he . mma 3.1
Plausibility of this conjecture. #ie0 supports the

Fact 3.1 Conjecture 3.1 holds for the bi i i
; nary and t i
models, as well as for the MNL model. Y anc frinomial probit

Proo i ; : . .
and v f The fact holds if there is an (inverse) relationship between P’

15 H -
o Accordmgl to the Ge;l-sc_hgorm theorem [see Stein (1967) for example] the jih eigenvalue
rada. squzllrc matrix A must lie in a circle on the complex plane that is centered at {#;;,0) and has
ius given by the sum of the absolute values of the ofl-diagonal elements on lhejv:,t'h row.
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For the MNL model this inverse relationship 1s

¥, — Vy =log(pijm), i=2,...,1

For the binary probit model it is
V, = Vy = 0@ (pa),

=(var(é, — &)1 . _ _ o
Whel;[:)ra the( trinolmial probit model, it is possible to give a similar proof

without actually deriving the inverse re]ation§hip. Tlhis can be dor_le b};
expressing p,{V’) in the form of Eq. (2.17} and inspecting the properties o
the equation {Daganzo, 1979b). W

Let P,(8,0) be the choice function of a model without attributes, whibcilg
is speciﬁéd so that the choice probability vector can take_every pos§1
set of values. According to Conjecture 3.1 and Fact 3.1 this can be done

by, for example, setting
V,=6;

with #; = 0 and selecting E; as a positive-definite matrix.
The highest log-likelihood is given by

N ~
max . log P, {0,0)

0 a=1
or, since any desired sct of probabilities can be attained by SGIGCtiI‘llg the r}glét
V'l.‘lue of 8, we can use p;,,i=1,...,1, as the independent variables and,
il desired, obtain @ afterwards. Thus, we can solve instead:

N
max y, logp,,,.
pi =1

I -
subject to pi=land0<p<li=1....1,
=1

which, lctting N; bc the observations in the sample choosing alternative i,

is equivalent to

1
max ). N;logp;

Pi i=1

I .
subject to Zpi:Iand0<p,<1,r=1,...,I.

This yields p; = N;/N, and the maximum possible value of the log-likelihood
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function if no explanatory variables are included {the background log-
likelihood):

! N, L N, N;
logl — N;log—' = N{ élog%‘}. (3.33a)
.';1 N :';1 N N

Conjecture 3.1 and Fact 3.1 indicate that the background log-likelihood can
actually be obtained since there are values of @ that yield: p, = N /N, . ..

Pr=Ny/N.
The normalization
—log L(f) + log L log L(6)
2 _ - _ )
! log L log L T4 (3.33b)

which represents the [raction of background log likelihood that is explained
by the model, is independent of sample size. It ranges from zero (or perhaps
even negative for a model that does not contain constants in the specification
of the measured attractiveness} 1o one, and is casy to interpret.

For models with specifications that are linear in the parameters and
contain independent constants in the measured attractiveness functions, o
is sure to exceed zero since log L is the maximum value of the log likelihood
that is obtained when all the parameters except the constants are set equal
to zero.

Since the distribution of log L(@) is known for any given value of @,
{see Theorem 3.1), so is the distribution of p? which can be used as a test
statistic. The resulting tests are, however, equivalent to the ones based on
Eq. (3.30) and less convenient to apply because they necessitate more
calculations.

Some authors have proposed to use different measures of goodness of
fit. Stopher (1975) proposed the use of a correlation ratio and Burns et al.
(1976) the use of a correlation coefficient. These measures, however, require
that the data are grouped before computation, and therefore may be difficult
to apply in cases where there are several attributes and more than two
alternatives.

The normalization of log L(@) given by Eq. (3.33) is not either the only
one that is currently being used. Also popular is calculating log L{0) and
using that in Eq. {3.33b} instead of log L. In logit models with linear specifi-
cations this is equivalent to setting p, = /I, i=1,...,I and logL =
—Nlog(/} instead of Eq. (3.33a).

In MNP models the form of p; depends on the form of E. when =10
and thus a general form for log L.(0) cannot be given. This normalization is
a little bit more difficult to interpret than Eq. (3.33b) because the value
of p? corresponding to a totally unexplanatory model is neither zero nor
any other constant.
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The reader can check that for the example introduced in Section 3.2.2

log L(f) = 33.895,
N =50, N, =14, N, =129, and Ny=T.

Consequently then,
logL = —47.381 and p# = 0.285.

Finally, we propose another measure of goodness of fit, Whic_h like Eq. (_3.33b)
ranges from zero to one but has a more intuitive physical interpretation.

The expression

1N
1 ~ N .
P(a) = exp<—log L{#); = |:H Pcm(ﬂ,a[,,)):|
N n=1
can be interpreted as the (geometric} average choice probability in the
sample and thus ranges from zero to one. Analogously,

p=exp{N~'loglL}

can be interpreted as the average choice probabil_ity of the chosen alterna;mie
in the last model withoul any explanatory variables. Of course, 1- p, is
the average background probability of the rejected alternatives, representing
the overall amount ol uncertainty in the data, and

vy = (pla) — P/l — p)
can be interpreted as the reduction in such uncertainty resulting [rom the

new model.
For the example in Section 3.2.2

Pla) = exp{—33.895/50} = 0.51,
7 = exp{ —47.381/50} = 0.39,

showing that the average probability of a chosen alternative can be increased
to 0.51 by inclusion of explanatory variables, from the backgroupd valut_e of
0.39. Although this information by itself is easy to 2understa.m:l in Physmal
terms, one may compute p2 if desired; in our case P = 9.196, showing that
the attributes of the model reduce the overall uncertainty in thez data b);
about 20%,. With disaggregate demand models the _vah'les c?f Pi and- fels
are typically smaller than the coefficient of dfetermmatlon in regression
analyses since in studies of human behavior X 15 usually large.

The values of p? are not, however, indicators of moc'iel correctness. To
test the correctness of the model one would have to retrieve the actual dis-
turbance vector &, for each observation in the sample, to check whether tl_ley
are MVN distributed according to the hypotheses of the model. In_rcgrcssnon
analyses one does that by analyzing the residuals of the data with respect
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to the estimated regression equation. A similar check is, unfortunately,
impractical for MNP models because the valucs of U, for the individuals
in the sample, Utni» are not observed in the data and it is not possible to
determine the residuals of an observation from {U,,; — V@, a,)}. The in-
formation we do have, that {Uc, = U Vi £ ¢} for every data point, could
conceivably be used to construct a mode] appropriateness test. The informa-
tion in the data is so small, however, that the test would not likely be very
powerful, making such an effort hardly worthwhile.

This is why i specifying MNP models one has to rely much more on
good judgment than on statistical fit, as was pointed out in Chapter 1.

3.4.3  Behavioral Models—M yith or Reality?

Disaggregate demand models have some desirable properties, such as
data efficiency and ease of application.!® Unfortunately, by sheer repetition,
more than by anything else, it is now unquestioningly accepted by many
that disaggregate demand models are also “behavioral,” ie., a choice func
tton depicts causes and effects of human behavior in that it represents how
the response of an individual changes when some of the attributes (stimuli)
in it are changed. This section is included to challenge that widely accepted
tenel and, hopefully, to make researchers and practitioners a little more
skeptical of the results of a model.

b Il we want to study the behavior of a group of individuals, we must
observe how they respond to different stimuli, but for the study to be meaning-
ful the same group of individuals would have to be observed repeatedly.
Under these ideal laboratorylike conditions, one could make statistical
inferences about behavior and claim that a resulting model is behavioral,

Unfortunately, however, disaggregate demand models are usually cali-
brated with cross-sectional data including observations of different individ-
uals in different situations. Therefore, it will not be uncommon for the choice
function of 2 model to represent differences from individual to individua]
rather than behavior. Such choice functions, although providing a good fit
to the data, may not be behavioral,

In the above-mentioned binary probit modal-split study of the city of
Mérida, Venezuela, it was found that the choice probability of public

'8 Although by no means a typical example, it is illustrative to know that the fraction ol all
trips in the rush hour made by private automobile and public transporiation wag predicted for
the 210 origin-destination pairs in the cily of Mérida, Veneruela, by a stafi of 30 graduale
students and the author in eight working days. In addition 1o the design and execution of a home
intervicw survey (no suitable data were available for a modal-split study), this period had 1o be
used Lo familiarize the students with disaggregate demand models since none of them had used
such techniques before.
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transportation increased with the transit access time and that such a phe-
nomenon persisted with several alternate specifications that were tried (as a
matter of fact, transit access time was the best explanatory variable in all
the specifications). This seemingly surprising fact was later associated with
the layout of the city, which has transit routes flowing through the more
affluent parts of town. The access time behaved, thus, as a proxy variable
for socioeconomic status and, consequently, we could not claim that the
choice lunction represented behavior as far as the transit access time stimulus
was concerned.'” Of course, one can argue that such a phenomenon could
probably be removed if one had included in the model the right socio-
economic variable; but, since such variable would be highly correlated with
transit access time, its inclusion would undoubtedly create multicollinearity
problems, which would still make the estimation of behavior impossible.
In the Mérida model, inclusion of several socioeconomic variables failed to
decrease the significance of transit access time, which could probably be
attributed to our failure to identify the right explanatory variable. Neverthe-
less, the fact remains that with the available cross-sectional data, behavioral
inferences with respect to transit access time could not be made.

Even in instances where the choice function seems to depict behavior in a
qualitative way, there is no assurance that the magnitude of the coefficients
of any policy variable are the right ones because that variable may be a proxy
for another neglected attribute, without the dramatic effects described above.

As a matter of fact, only if the explanatory variables under consideration
are totally uncorrelated with neglected attributes and there are no specifica-
tion errors and multicollinearity problems can we say that the model depicts
behavior. Our intuitive belief in these facts is the only assurance we can have
of the behavioral content of a model. In other words, a discrete choice model
may or may not depict behavior, but the fact that it has been calibrated from
disaggregate data does not provide such an assurance,

3.5 Summary

The most relevant issues connected with the specification and calibration
of MNP models are covered in this chapter. In Section 3.1 we discuss the
specification aspects and argue that MNP models are quite robust because

'7 11 should be noted that although any policy analysis of modce choice involving such a
model and changes Lo transit access lime would be meaningless, the resulis of the model were
still useful to establish the existing modal split. This is true in general of disaggregate demand
models, Although they can always be used to establish patterns of choice in the population they
are calibrated from (not behavior), in order to be relevant for policy analysis and to have the
transferability properly (see Section [.2.1) they must be “behavioral” ic. they must also
reproduce patterns ol choice in different situations.

3.5 Semmary 123

éhey can be applied u_nder several circumstances, including errors in the
ata and neglected attributes. Some necessary and some sufficient conditions

vector. Although Section 3.1 is not based on any particular reference the

reader will find related discussions in Manski 73) = ‘ :
Wise (1978). 1 (1973) and Hansman and

erties of the MNL model. The reader interested in choice-based samplin
will find a thorough explanation of these models in Manski and Lefmag
(1977): The model-updating problem discussed in Section 3.3 was first
1m_zest1gated‘l‘or a onc-parameter case by Atherton and Ben-Akiva (1976)
using Bayesian decision theory. Lerman et af. {1976) subsequently gave a
parameter_—updating formula for the multiparameter case. Although the
formula given in this book coincides with the formulas provided by these
aluth_ors, we chose to interpret them as an approximation to the maximu
likelihood estimator rather than as a Bayes® estimator. "
In S_cctlon 3.4 we are concerned with procedures to evaluate the validit
of a calibrated model. In it, we show how to develop confidence regions aml:i(
perform hypothesis tests using the results from the previous sections. Two

y measuies of overall goodness of fit that can play a role similar to the correla-

tion coeﬁicie_nt In regression analyses were also presented. In addition to the
bapers mentioned in the text the reader may find valuable the review of
goodne_ss—of—ﬁt measures given by Hauser {1978) from an information-
theore.tlc approach. The section concludes with some remarks about the
behavioral content of MNP models calibrated with cross-sectional data.
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In many MNP applications, knowledge of the choilze funcFim:elsa;tl:;
i i i i d many a study would termina ]
ultimate piece of information an oot o
i i i ‘ -flow theory, knowledge of the cr
calibration. For instance, n traffic : - { : ical gap
i i i tudying unsignalized intersec
and its variance is all one needs foF 5 : e e o
i -lane bidirectional roads; in toxicology, .
passing zones on two : y . oleey. | cage of
iti eath in 509 of the pop
the critical dosage of a drug that will cause _ _ population
i t is needed of a binary probit mode -Inbe
of rats may be the only thing tha ; bit model. Tn both
[ i P model terminates with the ¢
ol these instances, the use of a MN : > caration
and its1i tation. In demand forecasting, there are a
process and its interpre ; nore are also nstances
tly from the calibration p ;
where the final answer results direc ! o
i i lue of travel time some resear
mstance, to estimate the monetary val e
i i i logit) models of route choiee betw _
have calibrated binary probit (and : _
h?gvhways one of which has a toll. In these models, the choice function is
pl = q)l:gl TOLL + BZ(TZ - Tl)]! 01 > 0., 92 > 0, - b
where we assume that the toll is on highway ? and ‘T,- is thf; Ili;a\zzlutsl::eam)ir
1 i is behavioral, i.e, it repres
routc i. Assuming that the model is epr .
effects (cf Section 3.4.3), one could say that the_ quantltyfmhpr};acl:;tslmwti}tlﬁ
i lative attractiveness of highw
above equation represents the re : ! vay | with
i i Ly does not change if one gest
espect to highway 2. Since such a quantit not :
‘iollpone unitg as long as the travel time differential is changed by 0,/6, un;ts;
for the population under study the value #,/0, would represent an a\::crm%d
monetary value of travel time. A study of the value of travel time
refore terminate there. ' ‘ .
theIn many instances, however, one is not only interested in the value ofbff
er se, but also in the numbers of people from tht? populatlor_l _(or any suill
Igjrr.)up,thereof ) that select each one of the alternatives. In addition, one w
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also be interested in other measures that characterize the situation, such as
the elasticity of demand (or usage), the total (and average) satisfaction
derived by the population from the set of alternatives available (o them,
and its elasticity. Chapter 1 explored some of these figures of merit.

We shail now explore how to use a choice function to obtain the above-
mentioned information when some of the attributes in the choice function
vary across the population. In our analysis we shall assume that the choice
function of the MNP model is known with certamty; that is, there are no
spectfication errors and the values of the estimated parameters are very close
to the true parameter valuyes, Furthermore, we shall consider only very large
groups of peopie; this results in deterministic predictions, since the laws of
large numbers ensure identical forecasts for groups of people with the same

of the figures of merit for small groups of individuals.

A figure of merit for a heterogeneous group of individuals, such as the
total usage or the average satisfaction, can always be equated to an expecla-
tion of a similar figure of merit defined for homogeneous groups of
individuals. For instance, as was shown in Section 1.2, the expected' usage
of alternative i, y,, is related to the expected value of the choice probability
function according to [see Eqgs. (1.4a) and (L.4b) in Chapter 1]

( yi=M [ P(6,a)F(a)da, (4.1a)

Vi = EJ[P{8,A)]M = E [MPyo, A)l, (4.1b)
where M is the number of individuals in the group and F(a) is the density
function of the attribute vector across the individuals of the group. This
confirms the previous statemend, since y; is given by the average cf MP,(0,a)
across the group, and MP(0,a)is the usage for a homogeneous group with
A=a

In general, a gencric fi gure of merit defined for g homogeneous population
group with A = a will be a function of @ and a, which as in Chapter 1 we
denote by T(8,a). For a heterogeneous group, and as was also shown in
Section 1.5, the corresponding figure of merit can be expressed as

where the expectation is taken with respect to the distribution of A in the
group under study.

! The word “expecled” is used here beca use the actual usage is a random variable that would
Normally differ for o diffcrent group of individuals with same distribution of Lhe altribule
vector. However, since in (his chapler we exclusively study large groups, the word will be
dropped from now on.
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4.1 Two Common Figures of Merit

The most commonly used figures of merit are the usage and the overall
level of satisfaction. These two variables and their clasticities are analyzed
below for homogeneous groups of individuals and expressions for 7(#,a) are
obtained. Sections 4.2 and 4.3 discuss calculation of Eq. (4.2).

4.1.1  The Demand Function

The demand function of alternative i, D{8, a), for a homogeneous group
ol individuals with A = a is Di(8,a) = MP{6,a) since we can do away with
the expectations in Eq. (4.1b). Similarly, if we are interested in the joint usage
of several alternatives and we let .#' be the set of such alternatives, we can

define the pooled demand function as

DO,ay=M Y P{0,a). (4.3)

iey’
The elasticity of demand with respect to attribule 4, is

aD{8,a) «,

"= Dgay KTloos
where D(8,a) is given by (4.3); or, using vector notation,
a 0 - 0
200 = v, logg,a)| ) O (44)
0 0 - g

Equation (4.4) can be evaluated numerically for MNP models with the
techniques that were used (o calculate the gradient of the choice functions
in calibration programs.

Closed-form elasticities can be obtained [or the binary probit model; if
as explained in Section 1.3.3 the specification is expressed as p; = ®[V(8,2)]
and p, = [ — ¥(8,a)], the elasticity of demand is

0
. $(V6,8)] “
ED = CD[TG,&):[ V,,V(ﬁ, a) . . . (45&)
and
0
_ ¢[vie,a)] .
ED = —m VRV(B,ﬂ) . . ) . (45b)
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as d > }'
S t 1 nctions ! a |lle
I !I[e 1€48Ure a“]a(: 1venes IL“IC 10118 are mear ]L] ct 15 O

v =a[0],

:}vflher; [#]is an s x 2 matrix whose entries are known constants {remember
0rat the eIemgnigs of @ are known). If the covariance matrix E; is independent

4, we can define a constant o2 equs ianc = ¢ ich i
briAd ¢° equal to the variance of £1 — &,, which is

0'2 —_ (1, ‘—I)Ec(ki) = 0'12 + 0—% — 20-12’

;1(1;)11_ ;};pres? Vg)(, Ga) as a[@1(_ e 1. This is, of course, egnivalent ro the
ion for ,a) given i i adi ing 1
o ) given in Section 1.3.3. The gradient appearing in Egs.

VaV(0,3) = 6= 11, — )[T". (4.5¢)

.Fc')r the trinon_lial probit model with covariance matrix independent of
a},] it is also posmble Lo 'derwe a closed-form elasticity formula with the
shorteut gradient evaluation method of Section 2.4.2. Since

‘ Pi(9,3) = p;[V(6,2),x,],

the chain-differentiation rule yields

£

V.Pi0,a) =V, v, 2:)[—i1@(1/1 SO
ag- - ay)
ghere [&( Vl V, /6(a! *-ag] is the Jacobian matrix of V{8,a), and
h,{,\'J,-(V, I is available in closed form by Egs. (2.37) and (2.38). ]’)i\’fiding
EE c;s (zxgr?ssmnlby Pi-(ﬂ, a) yields V, log P(8,a), which can be entered in
-3 lor a closed-form elasticity formula. The 1ti 1 i

also has closed form elasticities, 2 rtinomial logit modd
. A' general property of the gradient is that the derivative of the MNP
unctlon,_ (V. X), with respect to V; is negative if j # ; and positive if j = ¢
(see Section 2.4.3). Thus, il an attribute appears only in the attractiveness

“ The reader can check tha if V a[6] the clasticity vector is

b I 0
e'={—P1!—P:,---,1—pf ,,,,, —p[0]" )
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4.1.2 The Satisfaction

It has been suggested (see Williams, 1977 for example) that the actual
benefit derived from a choice situation by a given individual is the perceived
aftractiveness of the chosen alternative since in most applications it can be
safely postulated that choice makers derive satisfaction only from the alterna-
tive they choose. The satisfaction for a random choice maker from the
homogeneous group is U, if ; is the chosen alternative. But since by definition
of random utility model the perceived attractiveness of the chosen alternative
is the Jargest, the satisfaction is given by max(U;), i=1,..., I. Defining
the overall satisfaction of the group as the sum of the individual satisfactions,
the laws of large numbers ensure that the overall satisfaction is M times
the expected satisfaction of a randomly selected individual. The expected
satisfaction, which we call the satisfaction, is

S(0,a) = E[m_ax(U,—)], (4.6)

where, for the MNP model, U ~ MVN[V(#, a)}, £.(¢,a)]. For binary probit
models, it is possible to express $(8,a) in closed form by use of Clark’s
formulas [Egs. (2.24}] as follows:

S(6,2) = V,(0,2) + [V,(0,a) — V3(6,8)]R[V(0,2)] + 06 [V(8,], (4.7)

where o = (o} + o3 — 20%,)Y2 and V(8,a) = [V,(8,a) — V,(6,2)]/o.

For general MNP models, it is necessary to calculate S(@,a) either
numerically, by simulation, or by approximation with Egs. (2.24). The process
is similar to that of calculating the choice probabilities because it also has
two stages. First, one calculates V = V(0,a) and X, = Z.(6,a) with the speci-
fication of the model, and then the expected value of the maximum com-
ponent of a MVN(V, E;) random vector. The function relating the satisfaction
to V and I, will be called henceforth the MNP satisfaction function

E[max(U)V, L] = s(V, Z)].

One must be very careful with the definition of satisfaction because two
choice models yielding the same choice function can have different satislac-
tions depending on how the measured attractiveness functions and the covari-
ance matrix are defined. This happens because, unfortunately, a set of choice
probabilities does not uniquely define V and Z; (or V for a MNL model)
and, consequently, it is not possible to express S(f,a) as a function of the
choice probability vector. This can be seen by means of an example if one
notes that when a constant is added to all the measured attractiveness values
ofa random utility model the basic form of the choice function is not affected,
but in the formula for satisfaction such a constant alters the final result.
That is, if a constant k is added to the elements of the measured attractiveness
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v.ector, the resulting, different, random utility model has a perceived attrac-
tiveness vector U* given by

L?‘:Ui%-k, l=1,,I

Al[hough this dorc'as not alter the choice probabilities {the constant %
f:ancels: out in the pho1ce probability expression—see Eq. (1.6), for example)
it modifies the satisfaction by exactly k attractiveness units

5%0,a) = E[mﬁax (U; + k)J = E[max(U,) -+ k] = S(0,a) + k.

Of course one could conceivably avoid part ol this problem by comparing
S5(6. a) to the satisfaction of a benchmark subgroup (say with a = 0) in which
case the constant k would cancel out. Unfortunately, the problem persists
because k can be an arbitrary function of a and as seen with the following
example different choices of k change the value of §(6, a) — S8, 0).

Exz:!mple _ Assume that the correct measured attractiveness of a binary
model f choice between public transit (alternative 1) and private automobile
(alternative 2) is as follows:

Modela V) = 0, — .a,,

Vo= —~0,a; + 05a,,
where a and a, are the door-to-door travel times by public transit and
automobile, and a5 represents the income of the choice maker. Alternatively,

one could subtract @3a; from ¥, and ¥, (o obtain a choice model with the
same choice probability functions:

Model bV, =0, — 0,0, — Osas,
Vy = —0,a,.

If we use momentarily the subscripts @ and b to denote the satisfaction
under medels ¢ and b, and remember that Si0,a) — S,(6,a) = 0,a,, we have

[Sa(eaa) - Sn(gs O)} - [Sh(es a) - Sb(ea 0)] = [Sra(osa) - Sh(ou a)]
- [SII(G! O) - Sh(ee 0)]
= 0;a,,

and we see that 5(6,a) — S(8,0) is not the same for Models ¢ and 5. W

The.refore, for the satisfaction measure to be meaningful, in addition
to ha\img a correctly specified set of choice functions, the perceived-
gtlractweness vector must truly depict attraction. Despite these qualifica-
tions, S(6,a) is a very uselul value because as shown in Section 4.5, even
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in cases where it lacks meaning, it can be used for certain supply—demand
equilibration procedures. Furthermore, if the covariance matrix ol the
perceived-attractiveness vector is fixed and known, as happens with MNL
models, the measure S'(8,a) = S(8,a) — V;(0,a), which we call the relative
satisfaction,” is independent of the way in which one specifies V(6,a) and
can therefore be used without difficulty. $(6,a) can be interpreted as the
increase in satisfaction resulting lrom addition of alternatives 2,3,...,1 to
the choice set.

We now prove the uniqueness of §'(6,a) by showing that il V(6, a) and
V*#@, a) are two specifications vielding the same choice probability functions,
S8, a) = §%(0, a).

If V* and V yield the same choice probabilities,

plV*(0.2), 2] = pi[V(8,2) L] = Pi(6,2), i=1....1

According to Conjecture 3.1 and Fact 3.1 the reduced measured-
attractiveness veclor is the same for both specifications and consequently

Vi6,2)— Vi(B,a) = Vi(#.2) = Vi(B,a),  i=1,....1

The satisfaction corresponding to this new attractiveness vector is denoted
S,(@,a). It is related to S(6,a) by

Su(eaa) = S(B‘J a) - VI(B!a)

because the two specifications only differ by a constant V((#, a), which was
subtracted from the measured attractiveness veclor. Similarly,

S, (0,a) = $*(0,a) — V(0,a)
and therefore
5.(6,a) = 5'(8,a) = 5*'(#,2). A

This establishes the uniqueness ol S'(0,a) for MNP models with fixed
and known covariance matrices; the result also holds for MNL modcls.
For the previous example, the reader can venly that, indeed, Si{6,a) =
Si(0, a).

Because the significance of an “attractiveness unit” is hard to grasp, it
is desirable to obtain an indication of its value compared with more usual
measures of benefits, such as monetary value or time. Such an indication
is provided by the coefficients of attributes representing money or time, if
such attributes enter in the specification ol the model; assuming of course,

3 We can also define the satislaclion relative to alternative i by subtracting Vi(8, a} from
5(9,a). However, (he term relative satisfaction is used in this book in connection with alter-
native 1. without loss of generalily.

derivatives of satisfaction fairly easii
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that there are no problems wi

. th - i .
15 truly behavioral. cross-sectional data and that the mode]

th Theoren_: 41 F or a random utility model with addi
g ¢ only_kmd considered in this book), the partial
iaction w1t.h_ respect to the mcasured attractiveness
its Iirobablhty of choice:
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derivative of the satis-
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Proof The partial derivative of the satisfaction with
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where F <(x) denotes the density function of the €rror terms
Letting I'i(x, V) be the indicator function, -

if Vit x> ¥+ x Vigj
otherwise,

Ti{x, V) = {(1)

1t 18 possible to interchange the derivative

, _ and j i
above expression and to simplify it as foliows icerel operators in the

é
"[; 0?17_: [i:max y Vi + '\-EJJF;-(X) dx

i,...
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Thi Co .
_ his result is Inturtively appealing because it indicates that the level of

Ways mcreases when an aiternative js improved and that the

¢ it will mean that we can calculate the
y even for heterogencous groups.
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Thecrem 4.1 can also be used to derive_the expression for satlzfactlfl)q :f
random utility models with fixed distributlor{ of the error terrrlns ty :}gc\:iloﬁ
a system of partial differential equatio_ns. Letting s(V) denote the SE'ltlsfor on
associated with the measured attractiveness vector V¥, we can write

MNL model
(V) exp(V)
oV~ I exp(V)

iti i =(0,—00, —0oz,...,—au). This
ith boundary condition s(V)=0 i[ V= (Q, o0, — o, » =0
;::lds s(V) = lggz,f=1 exp( V) in agreement with Eq. (1.10). The reader can
verify that for the trinomial GEV madel of Section 1.3.2, one has

1 -
s(V) = log(exp(V,) + {exp[V2/(1 — p}] + exp[V3/(1 — p}]}'™")
and that the expression given for the binary probit model meets

as{V)
o

If the specification of V is linear in a, i.e., it can be.expressed asV = a:[&]
and E, does not depend on a, the gradient of S(#,a) with respect to a 1s given
by theg chain-differentiation rule and the convenient [orm

V.S5(0,a) = [P,(6,2), ..., P, (6,2)][0], (4.8)

which simply involves calculation of choice functions. In more-complicated
1 : ically.
es the gradient can be calculated numerica . _ _ _
- Althoggh Theorem 4.1 states that the increase in satisfaction obtaul]c_d
from an increase in attractiveness is independent of hqw the mocciie 18
specified, the value of the derivative with respect to an attribute depends on
the way the model is specified. It is easy to sce that for model a

i=1

EIRR A |

=®(V)=p,.

S
L (6,3) = pal;
da;
and for model b
GSEB, 2 = —8;3py.
Gty

Thus care must also be taken in the ana_lysis .of the derivatives _of dS(B_,v :;)_.
Since S'(, a) is independent of the specification used, however, 1ts eﬂeck
tive is independent of model form; for models a and b _the rt?ader Cal:ld(; e
that 05'(8, a)/0as = 03 p,. This means that the added satisfaction prowh et ry
alternative 2 increases with higher—incomg groups. In other vlvordsﬁ lg1 ‘zv ‘
income groups benefit more from the existence ol automobiles than lo
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income groups. However, unlcss one can lell from knowledge of the problem
whether model @ or model 5 is the true one, one cannot tell how much more
salisfaction is derived by wealthy individuals than by poor individuals from
the general situation,

Although for many applications there are other figures of merit, in
addition to the satisfaction and demand, that may be of interest {Section 1.5
discussed the average number of automobiles owned by a fzmily), it is not
possible to discuss them. It should be remembered, however, that the
mechanics of prediction, discussed in Sections 4.2 and 4.3, would be identical
forany ligure of merit T(g, a) that depends on 6 and a through V and L. only.

4.13  Heterogeneous Population Groups

Equation (4.2) can be applied to predict the usage and the satislaction
of heterogeneous groups of people. However, before explaining how to do
that in Sections 4.2 and 4.3, we show how Eq.{4.2) can also be used to predict
the derivatives of usage and satisfaction of heterogeneous population groups.

Assume that we wish to calculate the clasticity of vsage with respect lo a
certain policy attribute 4 » Whose value «,, is the same [or all the population.
In such a case the integration in Eq. (4.1a) can be restricted to all attributes
except A, provided [a) is interpreted as the density of A exclusive of A,,
and a,, is fixed in P,(6,a). The equation is

yilayy =M f Pi{8,a}F(a)da,
and taking derivatives on both sides with respect to a,, we obtain

yitay = [ 0D ey (49)
a G(lp
showing that if we set T(0,a) = oP,(6, a)/da, and T() = Yila /M, Eq. (4.2)
applies. This formula is particularly useful for trinomial probit models in
which «, does not appear in Z., since in such case 0F;(0,a)/da, assumes a
closed form and hand evaluation of yi(a,) with Eq. (4.9) is much less time
consuming than another evaluation of ¥;in the neighborhood of a,. Qualita-
tively, the formula shows that if @, appears with a negative coefficient in
Vi (j # i} and/or with a positive coefficient in ¥, the derivative inside the
integral will always be positive and, consequently, so will be the clasticity
of usage.
The same analysis can be performed with respect to the satisfaction ofa
MNP model for which the policy variable a, does not appear in the co-
variance matrix. In such a case, the average satisfaction of one individual is

5(6) = f S(6, 2)F(a) da,
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and if V is linear in a, and the coefficients of a, are not functions of other
attributes, using Eq. (4.8), after interchanging differentiation and integration,

yields

P 1 (97 a)
F(a)da,

P(8,3)

as(0y
= f. 00,

where [0], represents the pth row of [#], i.e, the constant coeflicients of a,
in each of the measured-attractiveness functions. Bringing [8], out of the

integral and using Eq. (4.1a), we finally obtain
J1

=[8],] : |/M. (4.10)
¥

a5(8)
da,

Equation (4.10) is uselul because it is a function of variables that are im-
mediately available and obviates a special prediction procedure for 5(8)/9a,,.
In addition, Eq. (4.10) indicates that S(8) is related to consumers’ surplus.

Let a, denote the price of using one of the alternatives, say 1, and thus be
a variable appearing only in ¥;. As previously required we assume that the
coefficient of a, is constant. If «, is expressed in units of attractiveness it
will enter V; with a — 1 coefficient and Eq. (4.10) would yield

6[MS(0)]
— =

- y,-(ap). (41 1)

P
Assuming everything else is fixed, y(a,) is a one-dimensional demand
function relating usage to price, and the “area under the curve”

[ir, v dx = MISO), =0 — SO, =0,] (4.12)

is the change in consumers’ surplus to the users of alternative ; when the price
is dropped [rom a, to zero, as it represents their willingness to pay. Since
Eq. (4.12) can also be interpreted as the increase in satisfaction for the whole
population when the price is dropped from a,, to zero, the equivalence of the
satisfaction measure and consumers’ surplus should be apparent. It should
be noted, however, that for more realistic models in which the coefficient of
a, is allowed to depend on sociceconomic attributes the satisfaction is not
equivalent to consumers’ surplus because Eq. (4.12) does not hold.

The measure S(0) is more useful for policy analysis than other measures
of consumer benefits because if the choice-set is exhaustive (ie., it includes
not choosing anything), the population of choice makers includes everybody
in the population, and because with the proper selection of F(a), S(0) can
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il:epc(;a::ill;llitid fc;r (;iiffe;ent subgroups of the population. Thus using S{#), it
0 study the repercussions of different nolici : / ’
whole po;?ulation but also on minority groups. poes ot only on the
valuﬁ; s;n;l,lz;r comment can be made regarding S'0) = E,[S'(0,A)]. The
i 0 {9) represents the average increase in satisfaction resufting'from
mclusion of alternatives 2 to / in the choice set and is related to $(6) by

S(0) = S(8) — E,[v,(6,A)] {4.13)

Z;nscetgyedelﬁmtion S’l(G, a)= S(Q, a) - Vi(6, a). Equation (413)is particularly
3;: valuate f01j lmefdr specifications for then E ARACH NN AY) E(A)]
or linear specifications, the derivative of S (@) with r’espect to1 a , is -

P

35160) _ 35(0) (o]

EJ‘aP 5up

where [0],, is the coeffici i

ere [6], octficient of @, in V(@ a_). Natur

coincide if ¥,(@, A) is independent (ff A, 162, prely. the derivatives
The next section includes a nu ic: i l

_ merical exampl i

ideas that have been introduced, ple Hustrating many of the

4.2 General Prediction Techniques

4.2.0  Classification by Attributes

andTliléfpr;]etth(?]cli was briehﬂy described in Chapter 1 because it is very simple

O llustrate the difference between a i

demand models. The method i i Fdiserete choiee L Begle
nd ls. $ applicable to any di i

description will be illustrated with an example. Y iserete choice model. s

gen:}wen a figure of merit T(t‘)_, a) associated with the individuals of a homo-
OUs group, we can express its expected value for a heterogeneous groupas

T(0) = f T(0,3)F(a) da,

where F(a) is the mass—dens; i
- t i
mebors of tho srens y function of the attribute vector across the
Let us approximate F (a) by a discrete mass function defined as follows:
*) i '
F(a)z{m J2%i if a=a® k=12. K
0 otherwise,

2

w k) . !

ml;frll‘ﬁ the a™s are values of the attribute vector representative of certain

ot ers of the group, m®* is the number of members of the group with
ute vector approximately equal to 2%, and M js the size ol the group
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The values m™ must satisfy

K
> m =M,
k=1

so that the approximation to F{a) is a pro;l)er probability mass function. If
the values m™ and a¥! are available, the prediction equation becomes

mt

7 (4.14)

K
TO)~ Y T(O,a%)

k=1
which is the formula for the classification by atiributes method.

The name of the approach is based on the physical interpretation of
Eq. (4.14), which predicts T(8) after classifying the individuals of the hetero-
geneous group into K quasi-homogeneous classes with attribute vector a®,
and m™ individuals each.

Example We now illustrate the technique with a trinomial mode-choice
problem. This example will be used throughout this chapter. Each individual
living in the square zone depicted in Fig. 4.1 has three basic choices when a
major sporting event is featured in the downtown area:

(1) not to travel;
(2) to walk to the transit station located at the northeast corner of the

area and board the train;
(3) to drive a car {conditional on the decision maker auto-ownership

status) to the freeway access located at the southwest corner of the area
and go to downtown.

The square zone under consideration has a rectangular-grid street system
parallel to the sides. The population in this area is M = 10,000 decision
makers, who are unilormly distributed throughout the area; 709 of the
population own cars and 30%, do not; these percentages are also uniformly

distributed in the area.
Let us suppose that the following MNP model has been specified,

calibrated, and after some consideration judged to represent choice-making

behavior reasonably well:*
U, =0 + &1
U,=3—04A; —6R + &5 (transit),
U; =35—64, —6R, + A0+ &5 (car),

(not to travel),

* The MNP model specification given below is not likely 1o be realistic because the choice
probabilities are much 100 sensitive to the level of service attributes. This will resull in rather
low satisfaction values but is useful for pedagogical purposes to ensure that the mode choice

probabilities vary substantially within the zone.
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20 km

0 downtown

L= 1km

20 km
to downtown

[~

Fig. 4. i
8- 4.1 Hypothetical suburb connected (o the city center by frecway and traj
rain,
with
0.1 0 0
L:={0 01 o
0 0 o1

Ihe ],.'I].Its 01 the acces me ““le spent w1t n he zone) to tla sit A
T>

the access ti : i
e amsthler:yaﬁuiLohAA, the trgvcl time outside the zone by transit R
foo uto. C,E\l,r re al anc<I)ursl. A0 is a dummy socioeconomic variable th;t,
OWhert, O apeetS 2 — 1000 (a very large but finite value) for non—car
A0 -non-car owners do not drive to the sporting event
wing numerical values have been considered for this example: -

length of the square side L=1km

watlking speed St =4 km/hr

drl_vilng speed inside the zone Sa =40 km/hr

waiting time plus in-vehicle R =20 min
travel time for transit

freeway driving time Ry = 30 min
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Letting the attribute vector be A = (1, Ar, A, Ry, Ry, AO) the specifica-
tion can be written U = A[@] 4 & with

0 0 0 0 00
[B:IT: 1 -6 0 —-6 00].
35 0-6 0-61

We now divide the population into subgroups _with.simlla'r attribute vec;?li'l.
This can usually be done in different w;slysr butlm this particular case car

i ction of the problem results in just a few classes.

msp\;f; first noticlza that since attributes 4y, A4, and AO are th; onll]y (énﬁs-;
that vary across the population, they are the only ones we need to et (t)he
cerned about. The simplicity of the example epables us to segmen ¥
population quite easily into groups with approx1mate_ly equa{ 1drlvg’lg ;1:1-
walking access times. Figure 4.2 represents three po§51ble Cq}lcj. are pf o
tions of the zone with 1, 3, and 10 subzones each. Since th_g -FdC[(l)Dq o ’
owners is homogeneously distributed we can akssume thalt itis '.’O_A, in ete_lgn
one of the subzones. The values of m* and a™® are obtained by inspecti

of the figure.

ib}

. A "
Fig. 4.2 Three possible equal area partilions of the suburb in Fig. 4.1. The dots represen
the location of a representative individual in a subzone.
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a and aif) are obtained by measuring the grid distance from the center |

of gravity of Lthe subzone to the southwest and n

and dividing the result by the appropriate speed.

m* is proportional to the area of the subzone times 0.7
group of car owners) or 0.3 (il it is a group of non-

The values are summarized in Table 4.1 for the
the table the values have been entered inV
for all the classes. Had the matrix Z: depend
been computed for each c!
does not have to be done.

Let us now calculate P(@), 5(), S(0), and their deriv
we enter in Eq. (4.14) with T(0,a%) = Py
use 7(6,a") = S(9,a"). Note that hY|

ortheast corners of the square

if we consider a |
car owners).
three partition case. In |
= a[0], and V¥ is also given
ed on a, Z¥ should also have
ass. In our case, however, ¥: is constant and thal

atives. For P,(0) I
8,a™) (i=1,2,3) and for S(9) we
#) coincides with S(8) since [or this

problem V,(6,a) = 0. Table 4.2 gives the values of P;(8,a™) and S(9,a"), ‘

which were derived with the approximate formulas described in Section 2.2.3.

It 1s interesting to see how the satisfaction from travel increases with
proximity to the transit station for those segments of the population that
do not own a car but reaches a minimum in the middle of the zone for car
owners.

This result is reasonable since satisfaction reaches a minimum where
the travel time to downtown by the best mode is maximum. That location is
the middle subzone for car owners and the southwest zone for non—car
owncrs. The satisluction units can be converted to hours of saved travel
time by dividing them by six (we are assuming that the model is behavioral)
as indicated by the generic coefficient of the time attributes in the specification
of the model. The values in minutes are given in parenthesis in Table 4.2.

Table 4.1

Intermediate Caleulations of the Classification by Altributes Prediction Method

Northeasl zone Central zone Southwest zone
class (k) 1 v 3 40 5 6°
class size (m™) 2333 1000 2333 1000 2333 1000
¥ (hr} 0136 0.136 0.250 0.250 0.364 0.364
ai? (hr) 0.0364 0.0364 0.025 0.025 0.0136 0.0136
ao™ 0 — 1000 0 — 1000 0 — 1000
Vo 0 0 0 o 0 0
vip 0.184 0.184 —0.500 —-0500 —1.184 —1.184
VP 0.182 —999.72 0.350  — 99965 0.418 —9%9.52

* Non—car-owner class.
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Table 4.2

Final Calculations of the Classification by Attributes Prediction Method.

Class

Subzone 03] Pi6,a®y  Po(0,a")  Pi0,a"™) S8, a®yF

Northcast i 0.16 0.34 0.50 0.45 (4.5)

il 0.34 0.66 0 0.29(2.9)

Central 3 0.20 0.03 0.77 0.41 (4.1}

4t 0.87 0.13 0 0.03 (0.3)

Southwest 5 0.17 0 0.83 0.46 (4.6)
6" 1.00 0 0 0.00 (0.00)

® The numbers in parcntheses are minutes.
> Non—car-owner group.

The choice probabilities also follow an interesting pattern. As we move
away from the transit station car owners shift from transit to the automobile
but non-car owners simply choose not to travel since they are transit
“captives.”

The elasticily of the demand for each of the three alternatives can be
obtained with Eq. (4.4). As an example, consider the elasticity of the demand
for travel by transit for the individuals in group 4 (non—car owners in the
center of the square zone) with respect to the in-vehicle travel time by
transit R;.

Because within this subgroup alternative 3 can be ignored for most
practical purposes, we can use the binary probit elasticity formula [Egs.

(4.5a2)—(4.5¢)]:
1 0o 3 i =3
Uﬂ[_}: 0—6[ ]= 6|,
L P B 6
1

-3
1
V(0,a) = ¢~ ‘a[d] l:_ 1] =(1,0.25,0333)| 6 07 = 1.12,
6 ©

: 10 o0

b H1LID) o

g P a0 025 0
d(—1.12) 0 0 0333]%77

—34(-3,15,2)=(10.2, - 5.1, —6.8).
Thus a 1% increase in riding time would be expected to cause a 6.8%
decrease in the transit ridership of group 4.
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. The deri\_fative of_lhe satisfaction is much easier to obtain, as it is g.iven by
4. (4.8), which requires only a matrix multiplication. For group 4 we obtain

0 0 0 0 0 0
V.5(0,a) = (0.87,0.13,00)[3 —6 0 -6 0 0
35 0 -6 0 —6 1

= (0.4, —0.8,0, —0.8,0,0),

expressed in attractiveness units i i
. per unit change in the value of the attri
Expressing atiractiveness in hours, atiribute

V.58, 2" = (0067, —0.13, 0, —0.13,0,0),

éi;ut:lhwg see _that an increase in Ry of 1 hr decreases the average satisfaction
! e_n?clmdu'als in class 4 by 0.13 hr. This was expected since the fraction
ol individuals in the zone that choose transit is also 0.13.

Let us now aggregate all these measu
res for th ati
formulas for P,(6) and S(8) are r (16 Whole population. The

5, P(6,a%)
P9 = V()
2 10000 ™
and
5, §(0,a%)
s =510 = 3 3627
©) kg. 10,000 "

which with the {falues of m™ given in Table 4.1
. .1 and th (0. 2tk
and $(0,a™) given in Table 4.2 yicld e values of P,(0, a™)

Pi(0) =034  P0)=017  Py0) =049

and
S(0) = 0.34 (attractiveness units) = 3.4 (min/individual).

The usages and total satisfaction are obtained by multiplying these
r_esults by 1_0,000. The derivative of demand with respect to transitg ridin
ume (a F.'OIICY variable that is the same for all the population) can be obg
tained with Eq. (4.14), setting T(8,3™) = aP (0, a*)/aR;. Alternativel onf-:
can (f‘hange Ry by a small amount, recaiculate the usage, and approxlg,mate
n this way the derivative. The derivative of demand for ,transit of non-ca
owners is found below by the first method. For subgroup 4, the valu :
obtained with the elasticity calculations: it was , o

OP,(8,a")

R, = LI x6=-13
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In the same way we find

OP,4(0,2'%) OP,(8,a%)
Fy —— 2.2 and iR, = 0.11,_
and since there is the same number of individuals in the three classes, Eq.
(4.14) yields ¢P,(#)/0Rt = —(2.2 + 1.3 4 0.1)/3 = —1.2. The derivative of
usage is —1.2 x 3000 = — 3600 passengers/hr = — 60 passengers/min.

The derivative of the satisfaction is easier to obtain. Itequals — 6 x P,(f)=
— 1.2 attractiveness units/hr; or 0.2 min/min.

Note that since the derivative of satisfaction with respect to a policy
variable a, is so easily obtained, it is very easy to assess how mincr policy
changes would affect different population subgroups. For this particular
example, it would be relatively easy to study the effects of increasing the
frequency of trains, metering the ramp on the entrance ol the [reeway, and
in general any policy resulting in minor alterations to Ry and/or R,.

If desired, one can also obtain the derivatives of P(6) and 5(0) with
respect to variables that change across the population (such as the auto-
ownership percentage, or changes i driving time through the zone). In
such instances, however, the distribution of the attribute vector changes
when the attribute is changed and one must either calculate the derivatives
numerically or modily Egs. (4.9) and (4.10) accordingly. W

The problem with the classification by attributes approach is that for
models with several variables the number of classes needed for a reasonable

accuracy can become very large. .
To illustrate the effect that the number of classes has on the results of

the forecast, the usage of the three modes was calculated for the partitions

with one and ten subzones. The results are summarized in Fig. 4.3. Assuming
that the partition with ten subzones provides an accurate estimate of usage,
it can be seen that the transit ridership prediction error for the one class
partition was 64%, on the low side and for the three class partition 3%
on the high side. The relative error of the two other alternatives is smaller.
This is in general typical of discrete-choice models where forecasting errors
tend to manifest themselves on the usage of low probability alternatives.

4.2.2  Other General Prediction Methods

In order to avoid the encumbrance of a large number of classes, other
approaches have been devised. Two of these methods are stochastic simula-
tion and classification by V and E..

In the stochastic simulation method, one replicates an imaginary experi-
ment in which one would select persons at random [rom the population to

1
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1 Partition 3 Partitions 10 Partitions Mode
34%
40.3% 35.4% No Trip
6% 17%
16.5% Transit
53.7%
49% 48.1% Auto

Fig, 43 Prediction results with different numbers of classes

:elzs:é:'ieof]};elrrchohces and (il it were possible) their satisfactions. After many

ol such a process, one could easj i I :

o Pl o s easily provide approximate valyes

To carry out _the. experiment in a computer one has to devise a way of

gene;atmg Fla) distributed random attribute vectors [rom a table of random

Icn:dnuur :;:005 ;ath[?sueigrlilndom—ntlmber generator. There are standard pro-
O this, which are extensively discussed in the s ion li

_ ¢ simulation literature

S:ae F.IShI]nan (1973) fgr exa_mple). Obtaining a value of A, 2" in such a

; ;1!31( de.ra lels ﬂ;e real—clilfe action of selecting an individual from the popula

- oMce such an individual can be thought of iZ] -

_ g as characterizing a homo-

Sineous sul_:grou_p of the population with alternative shares, P;(6,a"), and

etra%f satisfaction S(0,a™), in accordance with Eq. {4.2) one can, app,roxi—

\r:late «(6) and S(0) by avgraging these values. Letting a™ be the attribute
ector _of the #th observation and N the lotal number of observati

can estimate P(#) and S, a} by e one
»

P‘- 0) ~ P. (1) ’ ~ & "
O~ X Plb.a")N, SO~ ¥ s@.a"w, (4.15)

;vilrllzeti,-(o,.a;"’) af'ld S(Q, 2" can be obtained with the approxmmate formulas,

e e right-hand §1dcs .of Eqgs. .(4' 115) represent the sample means of {wo
50 mdgpendent identically distributed random variables, t-tests and

confidence intervals can be buijt on P(0) and 5(0) for large va,lues of A?H
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Equations (4.15) can be used conveniently for MNL and binary prolllag
models because P;(#,a) and S{(#, a) assume an exact closed form. For M \
modecls an alternative way of estimating P(0) and. S(#) that does not.requlr;:
calculation of choice functions consists in ﬁnc_img the actl_Jal chou:t:i and
satisfaction of the individual every time an attribute vector is sample- atrlxl
working with the resulting strings of vah@s. Tc; do th?n‘g onc enters in the
specification of the model with a® to obtain V™ and E{” and then uses the

ceived utilities U™ = (U4, .. ., UY), the satisfaction S" = max,;- __,(lUf-”‘),
and an index ¢, which equals 1 if alternative i is chosen and 0 otherwise.
The estimates of P;(8) and S(B) are
N N
PO = Y. &"/N, S0~ Y S™/N. (4.16)
' =1 n=1 -

As in the previous case, one can perform t-tests and ﬁn.d confidence 1nterv'a_ls,
but since the ¢®s are Bernoulli random variables with success probability
; i i i f error size.

al to P(0), we can give a simple expression o
equWith ve(ry) high probability, the relative error is smaller than two stande.lrd
deviations, 2{[1 — P{#)}/[P{6)N]}*/%, which as in the example of Sectlor}
4.2.1, indicates that there is an inherent difficulty in predlctlpg the usage o
aiter;latives with low probability. To predict transit usage in the previous
example with less than 10% error we would neeq N z_2000 observations.
Although this is computationally feasible, the _sunulat;on _approach may
not be attractive for smaller choice probabilities and/or.-in cases wherﬁ
extensive sensitivity analyses have to be performed. Furthermore, altho:)ulgl
it does not require calculation of m* for a large number of groups as tf e
classification by attributes approach, it necesi;tates the preparation of a

ing of a®s.

computer program to generate the string o

Tphe classification by V and Z, approach has been proposed for t‘he MI\]I]L
model by Reid (see Reid {1978) for a discussion) and can also be applied to the
MNP model. Since the MNP choice [unction can be expressed as a MNP
function of V(#,a)and (8, a), p(V, L), it could be advantageous to classify

the population into groups of people, k = 1, .. ., K, with similar values of ¥
and X, and predict P;{f) by o
P{0) = i m® pi(VE,E8), (4.17a)
k=1

i individuals in class k.
where as before m™ is the number of individuals ir '
For the satisfaction, or any other figure of merit depending on a through
V and L; only, one has
K {k)
SO)~ T S sV, T,

k=1

(4.17b)
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where s(V,L.) is the MNP satisfaction function, relating V and Z: to the
satisfaction. These two equations indeed give the desired results because they
can be visualized as approximations for Ey s [p{V,Z,)] and Eyy, [s(V.E)]
which are equivalent 1o E,[ P8, A)] and E,[5(6, A)], respectively.’

The classification by V and L; approach is attractive for models in which
Z; is independent of a since then one only needs to cross classify the popula-
tion according to (¥, . . ., V). The method is advantageous in cases where /
is small and we have a large number of atiributes because then the number of
classes might be drastically reduced.

A problem with the above method, however, is that the distribution of
V is not usually known (otherwise there would be no need to estimate d),
and consequently one has to obtain the values of m™ from the distribution of
the attribute vector F(a) and the parameters of the model. This is a time-
consuming operation that requires cross classification of the population
across altributes, calculation of V for each one of the classes, assignment of
the individuals of each one of the attribute based classes to an attractiveness
class, and compilation of the number of individuals in each of the attractive-
ness classes. Since this process is equally time consuming as compilation
of the m®s for the attribute-based classes the method is not particularly
advantageous when a computer is used to evaluzate Egs. (4.14) because the
time and effort needed to calculate m™ in the classification-by-attributes
approach is usually the controlling factor.

In hand calculations, however, the method is attractive for MNP models
with three or four alternatives and many attributes that vary across the
population. In this case calculation of the choice probabilities and the
satisfaction is so cumbersome that a reduction in the number of times the
MNP function has to be evaluated does result in a reduction of effort,

H

4.2.3  Discussion

In the preceding part of this chapter, it was implicitly assumed that the
distribution of the attribute vector Fi (a) was exogenously avaiiable. Although
such may be the case in certain applications, in many others, especially those
involving long-term forecasts of socioeconomic data, it is naive Lo expect to
be able to obtain F(a) accurately since, even for the present, the distribution
of soctoeconomic attributes (such as income and family size) in a zone is

% The expectations with respect Lo A and (V,E,) are the same because p; and § depend on
A through V and Z; only.

® Actually one only necds 1o cross classily across the reduced measured altractiveness vector
Vi=(l—V,....V - V}) since groups of people having the same values for V' will also
exhibit the same choice probabilitics.
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rarely available. For sociceconomic attributes, one may have information
on their mean and, perhaps, their variance but very rarely anything else.
Level-of-service attributes and policy variables tend to be easier to forecast.
The distribution of the former can olten be determined, as was done in the
previous example, from the geography of the zone and the characteristics
of the alternatives. Policy variables, of course, are by definition exogenous
variables.

In order to avoid problems caused by lack of information on the distribu-
tion of a certain attribute, the availability of such information must be
considered a prerequisite for the inclusion of attributes in the specification
of a model.

Because of these problems and because of the involved calculations
required by the general prediction techniques, researchers have developed
approximate shortcut prediction techniques that only use the mean A and
covariance matrix of the attribute vector £,,. These characteristics are less
difficult to forecast than F{a) although estimating some of the ofi-diagonal
terms of I, may sometimes be difficult. Techniques and data sources to
forecast the moments of the attribute vector across the population vary from
discipline to discipline and will not be reviewed in this book.

In addition to forecasting A and £, a good forecaster will usually attach
a degree of accuracy to these values by figuring out maximum and minimum
reasonable values and, perhaps, even giving a subjective distribution of the
estimates. Since the values of A and £, influence the forecast their subjective
distribution can be used to obtain a subjective distribution of the forecasts.
This uncertainty regarding the values of A and I will be ignored in the rest
of this chapter but will be considered in Chapter 5.

4.3 Shortcut Prediction Techniques

We shall assume throughout this’ section that the specification of the
model is linear and that the covariance matrix I; is independent of the
attribute vector. Thus

U=a[0] +& (4.18)

where cov{¢) = X, and as before [#] is an s x I matrix of constants. It will be
further assumed that the distribution of A across the group of people under
study can be approximated by a MVN distribution with known mean A and
covariance matrix X,. We first explore the case of binary logit and probit
models, and then the MNP case. The discussion of the MNP model is
expanded Lo include components of A that cannol reasonably be approxi-
mated by normal distributions, and specifications of I, that depend on A.
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4.3.1  Binary Logit and Probit Models

Following Westin (1974),

let i abi : )
model as us write the equations of the binary logit

pr=0+e™)y  p=1-p, (4.19a)
and

§'=log(e" + %) — ¥, = log(l + e ") (4.19b)
where §' is Lhe mean relative satisfaction, and ¥ = Wy —V,.

Since the attribute vector influences onl
; ¥ P, P2, and 8’ th it i
possible (o express P, (6), P,(0) and S() as 1 P2 rough V, it is

P =E,[(1 + ")~ 1, Py@) =1~ P(0) (4.20a)
and

S'16) = E,[log(l + ¢=%)]. (4.20b)

Furtk_lermore,. since A _is M VN distributed with mean A and covariance
matrix X, Vis MVN distributed with mean V = A[#6] and covariance matrix

EV - 0 ZA 6 Ell]d I’ = I - L'} ].-S alSO nor a ly 1 i I
’ 1 ] lb c W me

I 1
V=V(H1) and a%:(l,—l)i‘.y(_i).

EC]l.llatllODS (4_1.2f)a) and (4.20b) can be evaluated by a statistical change of
variable. This is done by plotting the cumulative distribution functions of

pVy=(1 e %1 and S(V) =log(l +e7")

from that of ¥, and by calculating their means numerically.

Example. Assume tha! in the example of Section 4.2.1 we want to calcu-
lat(_: the fractlon of transit users among the non-car owners and their relative
satxsfactlon.‘Let us further assume that the binary probit model defined b
U, _and U, in the example is replaced by a2 binary logit model with simila)r{
chmcg function. Since for logit models L. = i7?L, and the logistic and normal
equat‘lons are .reasonably close when they have the same mean and variance
the binary logit model approximates well the binary probit model as long as,
the latter has X, = {721 In our case, if we redefine the attractiveness units to
be smaller by a factor of m/4/0.3, the probit model can be rewritten as

=0 Va=172-3444; — 344R,, %, =irl
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as if both U, and U, had been multiplied by =/,/0.3. This model is approxi-
mately equivalent to a binary logit model with the above V| and ¥,. We will
use such a model for the example. For this binary problem, the attribute

vector is:
A = (11 ATaRT):

where Ry is fixed at Ry = 0.33 and Ay is the sum of two independent identi-
cally distributed rectangular random variables with range from zero to

L/St = 0.25 hr (see Fig. 4.1). Consequently,

E(A;) = 0.25,
0252
var(d) =2 2 = 0.01,

V = —17.2 + 34.4(0.25) + 34.4(0.33) = 275,

and
gz = 34.4% x 0.01 = 11.83.

If we approximate the distribution of A by a normal distribution, the
cumuiative distribution function of V is

x—275

From Eqgs. (4.19) we have

I
PriP, <x}=Pr{l+e7 ") ' <x}= Pr{V < —log(; - 1)}

(=275 —log(ljx — 1) ]
_m( 223 ) 0<x<l, (4.21a)

and
Pr{S’ < x} =Pr{log(l + e™*) < x} = Pr{V = —log(e” — 1)}

. 2.75 + log(e™ — 1) 5
_(D{ 344 }, x<0 (4.21b})

These equations are plotted in Fig. 4.4, and since both P, and §' are non-
negative random variables, their mean is given by the shaded area in the

figure:
Pi(#)=0.76, P,(8)=1— P,(8) =024
S'(6) = 0.54 (attractiveness units) = 0.54 x 60/34.4 =094 min. W
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Fig. 44  Graphical execution of Westin’s binary logit shortcut prediction method

Equations (4.21) have the general lorm

[—17—[0 (x~' —
Pr{P 2 g 1 ’
r{ 1£x} = hl_i) , 0<x<l, (4.22a)

Oy
. V + log(e — 1
Pr{§ < x! = ¢ T 108 — 1) )
‘ ‘ [ oy > x20 (4.22b)

In any problem all one has to do is ¢ vV
alculate ¥
and calculate the area above the curves. He Vand oy, plot Ba (422

The technique is even simpler for th bi i
Reid, 1975) 1oy o s cven p ¢ binary probit model (McFadden and

V=W - Vs,
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z — ={1, — -1) (note the difference between the
g;fzietign :f vlill-"c(alrjllogit[;;)d pr(;:bit rlrzozcélfalsl)? ((Zonsider now t_he choice function
and the relative satisfaction of the binary probit model, which, as reference to
Egs. (1.18) and (4.7) shows, is

p=0V), p=1-p,
S’ = o[ —V®(=V) + $(V}].
Alternatively, and letting £ be a standard normal variable, we write p, and &
in a form more convenient to be manipulated:
pi(V)=Pr{ < V|V} =Pr{¢ — ¥V < 0|V}
and '
S{V) = cE¢[max(0,¢ — V)| V].
This last expression can be verified from Eq. (2.24a). The expressions for
P () and §'(@) are
P0)=E,[Pr{¢ -V <0|V}]
and )
S'(6) = oEy{E;[max(0,¢ — V)|V]}.
The expression for P;(8) reduces to the unconditional probability

PO = [ Pr{E =V <OV = x}fylx)dx = Pr( — v <0)

which, since ¢ and ¥ are normally distributed, is
P(0) = O[PA1 + o)'77], (4.23a)

where V = (V; — ¥,)/o and a2 = var(V, — V,)/a>. These values are obtained

as in the binary logit case. _ _ B _
Since £ — V is a normal random variable with mean —V and variance

1 + &%, the expression for the relative satisfaction,
S'0) = oE[max(0,¢ — V)],
can be simplified by means of Eq. (2.24a) to

-V v
510) = a[— Vo ((_IW) + {1+ 6p)' ¢ (W)] (4.23b)

If the satisfaction is to be expressed in units of any gi.ven a‘Ftribute, Ec!. (4.2?:b)
should be divided by the coefficient of such an attribute in the specification
of V.
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Example We repeat the calculations of the previous example, only this
time the original probit formulation is not altered:
1/1:0, ]/:)_:3“'614']'_'6RT,

We find ¢? = 0.2 and in the Same way as was done for logit:

V=[-3+6(025) + 6(0.33)]/,/02 = 1.12
and

i = 6%(0.01/0.2) = 1.8.
Equations (4.23) yield

P(0) = 0(0.66) = 0.74, P =1-— P =026
and

S'(0) = S(6) = 0.12 (attractiveness units) = 12 x 88 = 12 min.

{
These values are close to the binary logit values because the two choice

functions are similar: they also agree reasonably well with the three-partition
results of the previous section {see Table 4.2):

P(6)=(034+ 087 + 1.00)/3 = 0.74, P,(8) = 0.26,
and
§(6) = (0.29 4- 0.03 + (,00)/3 = 0.10 (attractiveness units) = 1.0 min.

The difference in satisfaction is due to the few classes used in the classifica-
tion method rather than to the inaccuracies of the shorteut method. The
reader can verify that using the ten-subzone partition $(0) = 1.2. W

432 MNP Shorteur Method

We now present a prediction method (Bouthelier and Daganzo, 1979)
that can be applied to MNP models in which some of the attributes are nol
normally distributed and/or do not enter the specification of V in a linear
form,

Let us partition the attribute vector into two classes A’ and A", of which
A"Is the set of attributes that cannot be reasonably approximated by normal
distributions and A’ is the set of attributes that for any given value of A” can
be jointly approximated by a MVN distribution, Without loss of generality
we assume that the elements of A’ are the first s attributes of A and the
elements of A" the remaining s” attributes (s = s -+ s"); thus A = (A’ A"
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In the remainder of this discussion it is also assumed that the covariance
matrix E; must be independent of a” and that the specification of V is linear
in a’ for all values of a”, that is,

Y = a'[0(a")],

where [#{a”)] is a, s x I matrix of known functions of a”.

When in a particular problem we partition A, there may be some attri-
butes that are normally distributed but must be included in A” to ensure that
L; is independent of a” and/or V is a linear function of a’. When doing this in
practice one must try to include as [ew attributes as possible in the A” vector
for, as we are about to see, this will simplify matters a great deal.

We write A'(a”) for the conditional mean of A’ given that A” = a” and
Z (a") for the conditional covariance matrix. Thus, for a fixed value of A"
(A" = a") the attribute vector A’ is MVN distributed; '

(AJ |An — an) ~ MVN[K’(a”)E EA,(aH)]’

and for a person sampled at random [rom the subgroup of the population
having A” = a” the perceived attractiveness vector is also MVN distributed:

(U]A" = a") ~ MYN(A'(2")[6(a")], [6(a")]"L4{a")[0(a"]] + E(6,2"}}.

This last property enables us to calculate P,-(6‘|A” =a") and S(#]A" =a")
by evaluating the MNP function or satisfaction function with the approxi-
mation formulas, or any other method. The expressions are:

P{6|A” =a") = p[U@"), Ey(a")], i=1,2...,1, (424a)
and _
S({A” = a") = s[T(a"), Zy(a")], (4.24b)

where we have abbreviated the mean and covariance of (U|A” =a") by
U(a’") and Z,(a"™).

If 5" 1s small 1t is not difficult to classify the population into a few classes
with similar A" to yield P;(#) and 5(8):

ud m(")
PO~ Y P(O|A” =a"®) (4.24¢)
k=1 M

X m®
S0 = Z S(B| A7 =a"Wy — (4.244d)
E=1 M
The technique, thus, can be summarized as follows:

(1) Partition A, make sure that X, does not depend on a’, and write
V as af#(a”)].
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(2) Partition the population into K classes according to a” and calculate
lj(alr) — K:(au) [9(3”)]
and
Ey(a”) = [0a")]"E 1a")[6(a")] + L8, ")
for the different classes with a” = a”®,
(3) Calculate P{(8|A” = a"} and S(@|A” = a”) for cach class with Egs.

(4.24a) and (4.24b), and enter in Eqs. (4.24¢) and (4.24d) to obtain P;(#) and
5(0).

Example We now calculate P,(8), P,(6), and P,(6) for the example in
Section 4.2.1.

_ Step 1_ Since A0 is an obviously nonnormal random variable it is
included in A”; all other variables are included in A" and the partition is

A'=(1,41,4,, Ry, R,),

A = (40).
With this definition,
0 3 35+
0 -6 0
[fa)]=(0 O —6
0 —6 0
0 0 —6

Step2 We need only two classes, one for 40 = 0 and another for
AOC = —1000.

' We now calculate A'(a”) and X ,.(a”). Since in this example the popula-
tions of non—car owners and car owners are both uniformly distributed,
the mean vector and variance—covariance matrix of the normally distributed
attributes are independent of 40.

Obviously, Ay and 4, are not independent since the sum of the distances
from each and every household in the zome to the freeway access ramp and
the transit station is 2L (see Fig. 4.1):

StAr + SpAs = 2L.

_ The distance d between a random household and a corner of the zone
1s-the sum of two uniformly distributed random variables, resulting in a
triangular distribution with mean L and variance L2/6.” Then, for the

" In cases wherc the geometry of a zone is not so regular simple manual simulations yield
answers readily. Alternatively, one can use graphical methods as suggested by Daganzo (1977a).
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numerical values chosen for this example we have
Ap= ﬁd, E(Aq) = %,
A= 41_0d: E(A) = TJ-ITJ,

and since Ar and 4, are linearly related,

cov(Ay, Ap) = —+/var(dy)var(4,) = —gi5.

We can now write

A'(a”) = (1,0.25,0.025,0.33,0.5)

lvar(AT) = 5%,

var{A,) = 3253,

and
0 0 0 0 0
0 & —9iz 0 0 \
@) =10 —si5  gges O O,
0 0 0 0 0
0 0 0 0 0

which with the known values of [#(a”)] and (8, a") yields
T(@”) = (0, —0.5,0.35 + ao)
and

1 0 (]
Toa)=[C 048 —00¢
¢ —-004 0104

Step.3 Asindicated by Egs. (4.24a) and (4.24b), we now use the_ approxi-
mation method to calculate the market shares and the satisfaction when
AO = 0and A0 = —1000.

If A0 =0, then m/M = 0.7, and

P,(0]| A0 =0)=0.18,  P,(8|40 = 0)=0.13,

and

P3(8| A0 = 0) = 0.69,

S(6]40 = 0) = 0.4,

If A0 = — 1000, then m/M = (.3, and the results coincide with the binary
probit example in the previous subsection, namely,

P,(0]40 = —1000)=0.74,  P,(8| A0 = —1000) = 0.26,
P48 A0 = —1000) = 0.00,

and
S(9|AO = —1000) = 0.12.
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Equations (4.24¢) and (4.24d) yield

P(68) =035, P,(0) = 0.17, P4(6) = 0.48
and

5(#) = 0.34 (attractiveness units) = 3.4  min.

Note how well the probabilities coincide with those resulting from the
10-partition {20-class) method in Fig. 4.3. This seems to indicate that approx-
imating some nonnormal random variables by normal variables is a rea-
sonable thing to do as long as the variables that are being approximated
are reasonably well-behaved (unimodal and smooth). W

The technique can also be applied to calculate the clasticity of demand,
since by Eq. (4.9)

S:)i — & 5.]’!'(“17).: MEA aPt(es A) L
ooy da, 04, u?

AVY MY v
=ME, {V,.— PilY, EE)[_(’:(__)J }L,
) {,‘Ap a,

which for linear specifications can be written

) ¥
toi =M o EvVerV,ZH][67],
P

where [0]} is a column vector containing the coefficients of A, in V(0,A).
Ey[VypdV, L)) can be calculated with the shorteut method in the same way
as P(#) or 5(0); the only difference is Step 3. Alternatively, one can calculate
P(0) again for a different value ofa, (a, = a, + Aay) and set

oD a Ya, + Aay) — a,) 512_
o Aa, Yo

Both methods of calculation require a similar amount of effort.

The derivatives of S(@) are directly obtained from the usage of each of
the alternatives

4.4 Prediction of Equilibrium

It is common in many applications of demand analysis to find that some
of the attributes that influence the usage of an alternative depend on the
number of individuals that select the alternative. In the transportation field,
for instance, as the number of people that use an alternative increases,
congestion appears and the attractiveness of the alternative decreases with
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the level-of-service attributes that are aflfected by congestion. The example
considered in the previous section could exhibit this phenomenon if the
travel time on the freeway, say, depended heavily on its use. In that case
R, would increase with y; according to a function R,(y,), its value would
not be known a priori, and the prediction methods explained in the previous
section could not be carried out. In other applications involving consumer
purchasing behavior the price of an item (alternative) will normally enter
with a minus sign in its attractiveness; butl il we are studying the demand
of such a large group of people that the amount of purchases affect the
market price of the items, the prices will not be known a prioki and prediction
cannot take place. Because of this economic interpretation we will call the
variable attributes “prices” and will denote them by =;. In this section we
show how to find a set of prices that are consistent with demand. We will
assume that each alternative has at most one price 7; associated with it,
that the price enters the specification of the measured attractiveness with
a negative coefficient, but that it does not enter L.. The sct of alternatives
that have prices will be denoted by .# . By selecting the right units of mea-
surement for each price #;, we can also ensure without loss of generality
that its coefficient is — 1. Thus, the specification we consider is

il alternative i has a price (i € .#,),

il alternative i does not have a price (i ¢ .#,), (4.25)
le,m;=0.

Ur' = K(B,a) -+ gi
U; = V(b,a) + ¢

where E; is positive definite and independent of = note that the measured-
attractiveness functions have been redefined, for the purposes of this section
only, to exclude the price vector. They are assumed to take finite values
for the range of a. Note that since =; 15 independent of a the prices must
be the same for the whole population.

Before a prediction can take place, we must find the equilibrium price
vector m*:

(4.26a)
(4.26b)

= m(y) if ie sy,

¥i = yi{r*) = MP,{0,7%),

where y{n*) is the demand function, 1.e., the [unction relaling usage to the
price vector, and P(f, n*) represents the probability that a user selected at
random from the population chooses alternative i when the prices are =*.
The equilibrium prices generate a demand which results in the original
prices and thus “clears the market.” Equations (4.26) will henceforth be
called the equilibrium equations.

Before stating in the form of a theorem a result that will help us solve
Eqgs. (4.26), we prove the following preliminary results:
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mrﬁg;ﬁzﬁ 4.1 'It"he fl;l/lction relating the satisfaction to the measured
7 €ss vector, & ili i i
e {V), of any random utility model is a convex {unction

Proof  Since s(V) = E[max,(V; + £)], we can write
s(V) = f max {V + x;} F(x) dx,

whenra I/I:" (x) ﬂepresents th.e mass-density function of & Since the expression
maxg Vi + x;} 18 convex in V; for any value of x;, and F,(x) is always non-
negative, s(\_/) 15 a convex combination (a linear combination with nonneg-
ative coeflicients) of convex funct

[ ions which is also convex, (See also para-
graph 4.2 in Appendix D.) W e thho para

Corollary 4.1 For a heterogeneous group of individuais and under the

the conditions stipulated at the ' i
_ onset of this section, the avera i i
S(0,x) is a convex function of 7. , e satisfaction

Proof S@.my=E,, {max[Vi(6,A) — m, + &)

and since max[ V{0, A) — x, + &:]is i
o, ; ; convex 1n w; the same ar
lemma shows that S(0, ) is convex. | gument of the

We oW assume that the price functions are monotonically increasin
continuous functions of y; such that m;(0) is finite and equal to x; . ancgi
_ﬂ,—( o) = . Furthermore, if we denote by =7 1(-) the (also cominugrll;g and
mcre'aslmg) nverse price functions (see Fig.4.5), and we let z_._be the ve(;t
of minimum values Timin» W€ Can prove the following lammz:‘:ln o

Lemma 4.2 The gradient of the function

Him) = MS@O.%+ ¥ [~

Com ) dw,
e g i .inin

=T

= ‘*min

4.27)

vanishes at a point 7 > Toin Where H(x) reaches a global minimum.

. Proof Thelogic of_ the proofis as follows. We first establish the existence
of values of m;, 7, . Vie 4, that vield H(x) > H{nm,) forall # > z_. and

IYvhe:;]ever T > T v for some i e .7, This enables us to restrict the search
or the glol?all opimum lotheset = {n:z, <rn<nx }. Next, we show
(t:lcl)al the mlllmnl-mm ol H(m) in 1T is reached in (he interior of H, and that
nsequently the gradient of H(x) vanishes there. With thi ]
completed. The details lollow. ] % the proofwil be
" S{nce S(0,x) is given I:_)y E {max;[Vi(0, A) — 7;]} and the maximum func-
lon 1s convex, Jensen’s inequality [see Feller (1971, Vol. I0), for example]
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Fig- 4.5 An increasing price [unclion, ils inverse, and the integral of the latter.
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ensures that

5(0,7) = max {E,[V(0, A)] — =;} = max {V(0) — =;}.

i i

Furthermore, since
max [V(6) — m;] = max[V(8)] — max (r;),
we can write

Hirm) = M {m:dx RAC)IE max (n,—)} + M Z TI;

+ Z |:fm Hl'_ l(w) dw — REMJ': = Tins

ic f, [ VO
and since (3 ; m) — max,(m;), which is the sum of the I — 1 smallest 7S, 18
larger than the sum of the I — 1 smallest =, .5, we can write

H(TE) 2 M {max [V;(H)] + (Z Tri.min) - m_ax (ni'.min)}

+ ¥ lif:" m (wydw — M ﬂ;:la M2 Monia

i€ g | ¥TLmin
or
H(r)=k+ > H=) n>q

= *min>
i€ dn

where £ is fixed (not a function of ) and

i

Hm) = |

i min

=1
T {W) dw — nfM’ T = T min:
since the lunction H;(m;) has a continuous derivalive increasing from — M

to oo, it has a finite absolute minimum H; at a (inite value of ;. Thus, we
can write

H(ﬁ)2k+ E H-‘+ Z [H['(T[,-)—ﬁ;], nznmina
iefx ic.-
or since the quantities in brackets are nonnegative,
Hm)zk+ ) H + [Hm) — ﬁe],
ie. 7o

foranyic ./, and TEm

= ‘“min>

where the right-hand side is a lower bound on H(z)for = > x,,;,, that depends
only on =;.
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Since lim,, ., H{n;) = co, the lower bound can be made as large as
desired by inc}easing 7;, and it is possible to ‘ﬁnd a value of m;, 7 1, foOT
which the lower bound will exceed H(x,,;,).

Therelore, il > n;, and #; = 7 e H®) > H{mw)-

We can thus restrict our search for the global minimurp of H(:».:) to the
compact set IT = {r:m,, < = < @, }. Since H(rn) is continuous in IT the
minimum exists. This completes the first part of the prool.

We now show that the minimum belongs to the interior of IT and that
consequently V_Hiz) = 0 at the minimum.

Taking derivatives in Eq. (4.27) and using Eq. (4.10) we have

SH(m)
on;

1

= —yi(m) + n7 H(m), i g,

Since for MNP and MNL models the choice probability ‘cannot_ be equal
to zero for a finite V [see the discussion on Condition (c) in Section 3.2.1],
y:{m) is always positive. Furthermore, since =, l(rc,-_mi“) =0,
JH(r)
Ir;

< O lf ;= ni,mins

and H(x) can always be decreased if one of the components of # equals its
minimum value by increasing that component a small amount. Consequently,
the minimum of H(x) is reached at a point strictly larger than nm;,,._As a
matter of fact, such a point must belong to the interior of 11 b_ecause if one
of its components i equaled x; .., H(n) > H{r;,) and the point could not
be the minimum. The proof is now complete. W

We can now prove the following:

Theorem 4.2 Under the conditions of Lemma 4.2, the unique minimum
of H(z} is also the unique equilibrium price vector z*.

Proof We first show that H(x) is strictly convex for = > =#,.;,. Since
m; '(w) is increasing,

Jﬂ s Yw)dw

i min

is a strictly convex function of =, for =; = =; ;,,, and

> J:m“ m; tw)dw

fedn
is a strictly convex function of = _for @ > m,;,. This ensures that H{m) is
strictly convex in the convex set I1 defined by = = =, because, as shown
in Corollary 4.1, 5{@, =) is convex.
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The problem
min [ H(x)]
nell

is thus a convex programming problem with a strictly convex objective
function which can only have one local-global minimum [see Avriel (1976)
for example]. By Lemma 4.2 such a minimum exists and is reached in the
interior of I1. Since such a minimum is unique, it is also the only point of
f1 where the gradient of H(z) vanishes.

The proofcan, now, be completed because the equilibrium equations

yi(m*) = n7 (n}), ieJ,
can be rewritten as V_H(n*) = 0 [note that OH(m)/om; = — yi(m) + n7 ' (m;)],

and sincc V_ H(zn) vanishes exaclly once in 1, =* is unique and coincides
with the unique minimum of H(n). W

The mintmum of Eq. (4.27) can be easily found by mathematical pro-
gramming techniques. The variable metric algorithm described in Section
2.4.1 is particularly useful because V_H(x) is readily available,

JH(rm)
on;

= n; Yr) — yi(=m)

(it requires calculation of the uszge [or the given x), and H(x) only needs
calculation of S(8, 7). The Newton-Raphson method can also be used if
the derivatives of y,(x) are easily calculated. For most problems these methods
converge afler four or five iterations.

Assuming that $(0,7) has to be calculated five or six times af each itera-
tion and letting one effort unit equal the work nceded te do a prediction
of the choice probability vector, P(8, =), the total work involves about 25
calculations of § and five calculations of P, or 5 + 25/I effort units. Thus,
calculating the equilibrium prices is approximately 10 times more time
consuming than predicting when the prices are known. Although this may
scem difficult when done by hand, it is a trivial calculation when done by
computer with the shortcut prediction method,

The following is a simplified version of the example in the previous
section.

Example Assume that all the people of the zone in Fig. 4.1 own automo-
biles, AO = 0, and that the travel time on the [reeway imcreases with the
number of uscrs from the zone thal travels to downiown, y,, according to

Ry =05+ y,/6000 hr.
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Similarly, the transit travel time follows a si{nilar relationship with the
transit usage y,:

Ry =10.333 4+ y,/12000 hr.
We first rewrite the specification of the model as in Eq. (4.25):
U1 = éh
U2=3—6AT—R2+62,
U3 =35- 6AA — T3 \+ 63,

with I, = 0.11. Of course n, = 6R; and =, = 6R,, which yield the price
functions

7y =2+ y,/2000
and
73 = 3 + y5/1000.

These correspond to the integrals

J' s Y wdw = L" (1w — 2)2000 i = 1000(z; — 2)°,

2 mi

Lm Cowy N(wdw = f:’ {w — 341000 dw = 500(n, - 3)°.
The shortcut aggregation procedure yields for a random choice maker
(see step 2 of the example in Section 4.3.2)

U=1(0,1.5 - 1,,3.35 — 7,)

and
0.1 0 0
Z;=|0 0.48 —0.04
0 -—-004 0104

S(8, =) i1s obtained by finding the mean of the maximum of the three com-
ponents of a vector-valued random variable U having the above mean vector
and covariance matrix. With this, the preliminary calculations have been
completed, and we may start the search process. The variable metric al-
gorithm described in Section 2.4.1 will be used.

We start the search process at = = (2, 3) = «,;, by calculating the deriva-
tives and value of H(x) at m = (2, 3}.

Since U = (0, —0.5,0.35) coincides with the value for the car owners
of the example in Section 4.3.2, no new calculations have to be performed.
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The results are
MS(8, Renin) = 10,000 x 0.44 = 4400,
¥ = 10,000 x 0.18 = 1800, Vg, = 10,000 % 013 = 1300’

and
y3 = 10,000 x 0.69 = 6900.
This yields
H(nmiu) =4400+ 0+ 0= 4400’
oH
c (TE) = _y2+n-2—1(2)= _1300’
677.'2 ma=2
-0H
B -y i) - —6900.
OMy |ey=3

Since the function is to be minimized, the direction of search is given by
— VH(m) = (1300, 6900). As required by the variable metric algorithm, the
approximate inverse Hessian of H(m) is initially set equal to an arbitrary
positive definite matrix H,, which we chose to be the identity matrix 1.
We then find the point along the search direction that maximizes H(z),
Le., find the scalar #* that maximizes H[=(y)], where () = (2, 3) + {1300,
6900).

Sinceforn = 0, H = 4400;fory = 10™% H = 1518;andforn = 3 x 107%,
H = 2688, we know that

O=n*<3x107%

Alter some iterations of the golden section method, which can easily be
carried out on a programmable pocket calculator if H(x) is programmed
into it, we find that

n*=142x10"* and  H[z(p*)] = 1323.2.
Thus the result at the end of the first iteration is =, = (2.18, 3.98). The gradient
at this point can be calculated numerically; it is

V. H(n}

= (— 1340, 267).

n=(2,3.42)

The revised inverse Hessian is given by the DFP updating formula
[Eq. (2.32b)] which yields

H - 1 0.0056
71 0.0056 0.000168 |’
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and the new search direction is

1 0.0056
~VH() [0.0056 0.000168
The process is repeated a few more times by finding new values of n*, x,
and a search direction before convergence is achieved. The convergence
pattern is displayed in Fig. 4.6. The optimum is H* = 1144 and the equilib-
rium prices are 7% ~ 2.45 and =% ~ 3.93.
The approximate value of V2H(rn*) is

4000 -90
-90 3600 |
The usage of the three alternatives at equilibrium is

y* =(8170,900,930)

and the satisfaction at equilibrium is S%(@) = 0.0509 attractivencss units
(or 0.5 min/individual). The great reduction in travel and satisfaction is due
to the choice makers’ aversion to congestion in this particular model (as was

} = (1340,8).

.

24

2 Finish at:x® = (zm/
=30

7
|;\ 1 L L
T amn = 20 25 30

Fig. 4.6 Convergence pattern of the search for an equilibrium price vector.
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mentioned earlier, the example is not realistic but was chosen because it
illustrates the mechanics of prediction rather well).

The elasticity of y, and y, with respect to the equilibrium prices can be
obtained from V2H(r*) since .

SHm*)  ay,
omom;  onk

+ 6ijn|'_ I(T[:'k): f,_] € jn:
where 9;; is Kronecker’s delta (§;; = 1 if i = j, and 0 otherwise). Thus

A2 * ®
R OH@®
I'RJ [ 6‘]’{]. anJ + U_Vl Jy*

For our example we might be interested in encouraging transit usage ¥z; the
corresponding elasticities are — 8.4 with respect to the travel time by transit
and 0.4 with respect to freeway travel time. B '

4.5 Calibration Revisited

The shortcut prediction method can also be used advantageously for two
important calibration problems, which are discussed below.

4.5.1  Calibration with Grouped Data

If, as often is the case, instead ol disaggregate data, one has data on
groups of individuals, including

(1) the number of people in a group, n;,
(2) the number of people selecting each alternative, n, ;> and
(3} the distribution of the attribute vector across the group, Fj(a),

the maximum likelihood process described in Chapter 2 cannot be applied
because we do not know which individuals of the group selected what
alternatives. Thus, the maximum-likelihood equation must be modified to
use the available information. The discussion that foliows is based on
Bouthelier and Daganzo (1979).

We can visualize n;; as an outcome of a random variable N;;, which is
determined by randomly selecting a group of » ; people from a population
of individuals with distribution of the attribute vector F {a), and observing
the number that choose alternative i. The likelihood equation is then

L(6) = Pr[N; = m,.¥i,1|0].
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Assuming that individuals act independently, and that r; is small com-
pared with the population size, we see thal for 4 given group j, N; is a multi-
nomial random variable and

I n;! ! )
LO) = T] e — [PD]" ),
! 1

i
i=1 HU' i=

(4.28)

i=1
where P;;(6) represents the probability that an individual sampled at random
[rom a group with attribute vector distribution F;(a} chooses alternative i,
and J is the number of groups.

The log-likelihood function (except for an additive constant) is
J I

logL(0) = Y, > n;logP(0).

=ri=t

(4.29)

The shortcut method can be used to evaluate P(&h):
mi

3
”j

K
Py® =Y P;0|A" =a"®)
k=1

where m{® is the number of individuals in class k of group j and for notational
simplicity we have assumed that the same nonnormal attribute vector and
the same classes are used for all the groups. In this last expression P;;(6|A” =
2" is a MNP function that can be calculated as explained in Chapter 2.
The log-likelihood equation is

J

1 K
logLi®) = > 3 n,-jlog[z P(B|A" = a"“")mg"’/nj], {4.30)
i=1j=1 K=1
which requires I x J x K evaluations of a MNP [unction. The computa-
tional requirements are given by the expression of Section 2.4.2 with N
replaced by I x J x K.
Il all the variables can be considered normal, Eq. (4.30) simplifies because
P;{0) is a MNP choice function, and one can set K = 1 and m{® = n;. The
measured-attractiveness vector and covariance matrix are given by

U@,)= A, 6] (4.31a)

and

£,(0,)) = E(6) + [0]"E, [0], (4.31b)

where A; and £, characterize the distribution of A in group /.

Since P;;(6) is a MNP [unction, Eq. (4.30) has the form of the pseudo-log-
likelihood function of a choice-based sample [Eq. (2.7b)], which can be
calibrated with a standard code and the specification in Eqgs. (4.31),

As an example of estimation, we use the example introduced in Section
4.2.1. We have only one zone, one nonnormal variable, and three alternatives.

-l
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Let us assume that the specification of the model is
Ul = éls
Up=3—0A7; — 8Ry + &,
Us=35~-04, —0R, + AC + ¢&,.
We use only one unknown parameter, so the computations can easily be

verified by hand.

_ The data consis_l ol 3487 no trips, 1672 transit trips, and 4841 auto Lrips.
Slmcg these data coincide with the predictions in Section 4.3.2, the maximum-
likelihood estimate §J should be equal to six.

The calculations proceed as follows. Equations (4.31) vield

V(0,1) = (0,3 - 0.5836,3.5 — 0.5250)

and
( 960 0 0
T =—— 2 1002
w0, 1) 9600 0 960 + 1090 100
0 —100° 960 + 2

This enables us to calculate P, (0| A0) for i =1, 2, and 3, for AQ =0 and

— 1000, and for different values of ¢, Since min, = 0.7 and m®n, = 0.3,
Eq. (4.30) yields

log L{0) = 3487 log[0.7P, (4] 40 = 0) + 0.3P,,(6] A0 = —1000)]
+ 167210g[0.7P5,(8] 40 = 0} + 0.3P,,(0] 40 = —1000)]
+ 484110g[0.7P5,(8] 40 = 0) + D.3P4,(0] 40 = — 1000)].

As expected, log L(0) is maximized [or § = 6, and
log L(f) = —8278.07.

The reader can check that for ) = 5, log L{th) = — 1086897, for § = 7
log L{@)= —9728.41, and thul indeed §f = 6. ’ ’

. The statistical analysis of Chapter 3 can also be a pplied here since under
smplar regularity conditions it can be shown that the estimator @ is asymp-
totically efficient and normal, and that properties (1)—(5) in Section 3.2.1
apply. It must be remembered however that because the variability of A,
and_ L, across the data is usually much smaller in Eqgs. (4.31} than thé
var_lability of A with disaggregate data, it may be a problem to ensure that 8 is
estimable and/or that the sample size (e, number of groups) for which the
asymptolic approximations become valid is large enough. As a matter of
faEcL, unless the variability of A; and L, 1s large, the role of calibrating
disa garegate models with aggregate data must be restricted to com plementing
the information extracted from disaggregate data sources; this can be done
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with the model-updating technique of Section 3.3. For this application
estimabilily problems disappear since the combined estimator is no worse
than the criginal one. '

4.5.2  Calibration with Choice-Based Samples

The likelihood equation of a choice-based sample for a MNP model
requires that P,{@) be calculated once for each alternative [see Eq. (2.7¢)]
in addition to the calculation of exactly N choice functions. If the number of
classes K into which the population must be partitioned for prediction
is small (as happens with the binary logit model and all MNP models with
specifications that are linear in the parameters when the shortcut method
is used), the computational effort that goes into calculating the second terms
of Eq. (2.7¢) is negligible, and as long as the distribution of A is known
calibration by maximum likelihood of a model with a choice-based sample
is just as fast as for a random sample. '

4.6 Summary

The mechanical aspects of predicting with disaggregate demand models
are explored in this chapter; the main issue is how to translate a figure
of merit characterizing homogeneous groups of individuals into an aggregate
figure of merit for heterogeneous groups. In Section 4.1 two common figures
of merit and their elasticities are discussed; the first one is the choice proba-
bility function and the second one a measure of the benefits that accrue to the
population from the existence of the cheice set (Williams, 1977, Sheffi and
Daganzo, 1978a, Ben-Akiva and Lerman, 1978); this measure is called the
satisfaction. The discussion in that section centers about ways of calculating
these figures of merit and their elasticities; and, in the case of the satisfaction,
also about ensuring that it is uniquely defined.

General prediction techniques are explored in Section 4.2. The reader can
find additional general discussions regarding the mechanics prediction in
Koppelman (1974), which gives one of the first presentations of the problem,
Koppelman (1976a), which contains a taxonomy of the available prediction
methods at the time, and Reid (1978). The classification by V and L, is
discussed for the logit model by Reid (1978).

Section 4.3 discusses shortcut prediction techniques and is based on the
work of Westin (1974), McFadden and Reid (1975), and Bouthelier and
Daganzo (1979). The techniques discusscd arc bascd on the lincarity of the
measured-attractiveness functions on the attributes, and on a MVN approxi-
mation to the distribution of A. Ofhistorical interest mainly is a forerunner of
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these methods (Talvitie, 1973) which was based on the linearization of the
choice function itself.

The next two sections are extensions of the prediction techniques to the
computation of economic equilibriurn (Section 4.4) and to some calibration
problems (Section 4.5).

Section 4.4 considers exclusively equilibrium problems in which the price
of an alternative depends only on the usage of the corresponding alternative.
Although this paradigm suffices for many economics applications, there may
be cases where the price of an alternative depends on the usage of several
alternatives. This happens in transportation network studies where one often
has a system of streets connecting the points of a study zone and the usage of
the major street network (the traffic flows) can be visualized as the aggregation
of the decisions of the people in the study area regarding whether or not to
travel and what route to take. The alternatives of this problem are the routes
and the prices the travel time on each route. However, when routes overlap’
.the price of a route is affected by the usages of all the routes that overlap witl-;
it and Theorem 4.2 does not apply. In such a case it may be possible to use
standard fixed-point algorithms, as Hasan and Talvitie {1977) and McFadden
et al. (1977) did with Scar[’s algorithm (Scarf, 1973), but problems still persist
because the number of routes in a study zone is usually so large that the
algorithms are not capable of handling them. An approach that shows a good
deal of promise because it can handle the large problems that arise in the
transpertation field has been investigated by Sheffi (1978a); it is based on a
traffic assignment algorithm developed by Daganzo (1977a,b).

_ Section 4.5 discusses ways to calibrate MNP models by the maximum-
likelihood method when one has observations for groups of individuals (this

part is based on the paper by Bouthelier and Daganzo, 1979) and when one
has a choice-based data set.



Chapter 5 The Statistical Interpretation

of Predictions

In most demand-forecasting applications, the parameter estimate, output
ol the calibration process, is entered in the choice and satisfaction functions
to investigate how these figures of merit vary across both homogeneous and
heterogeneous groups of individuals. However, if the parameter estimate & is
not close to the true parameter value, 8,, the calculated figures of merit will
not be close to their true values and the result of such analyses will not be
meaningful. The question we investigate in this chapter is how inaccuracies
in the estimation of 8, affect the values of the forecasted figures of merit for
both homogeneous and heterogenecus groups of people. To do this we shall
use some of the results of Chapter 3 since they give an idea of the likely
magnitude of the difference between 8 and 8,

Since within a random utility framework most of the relevant information
concerning a choice situation and any one given individual is contained in the
vector of perceived attractiveness, relevant figures of merit for individuals
can usually be represented as functions of the perceived attractiveness vector
t(U). This will be the only kind of figure of merit considered in this chapter.
Throughout this chapter, we shall also distinguish between the average value
of a figure of merit across a very large homogeneous group of individuals (in
agreement with the terminology introduced in Chapter 4, we will call this
averagea figure of merit) and the actual value of the figure of merit fora given
individual, which we shall call an individual figure of merit. Note that,
depending on the type of function selected, the value of an individual figure
of merit may or may not be observable; for instance, the chosen alternative is
an observable figure of merit but the actual satisfaction of an individual,
7(U) = max{U}, is not.

A figure of merit corresponding to an individual figure of merit can always
be expressed as a function of & and a, T(8, a), since the distribution of U across
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the members of a homogeneous population group depends on § and a.
Consequently, figures of merit can always be predicted, whether or not the
corresponding individual figure of merit is observable. In mathematical
terms, the relationship between z(U) and 78, a) is

T(0,a) = E,[7(U)|8,a].

For example,.if the individual figure of merit is max,(U,), the corresponding
ﬁgure of merit is §(6,a) (this was the definition of the satisfaction [unction
introduced in Chapter 4), and il the individual figure of merit is

(U) = if U,_>UJ Yi# i,
0 otherwise,

it is not difficuit to show that the figure of merit is P.(8, a).

Sections 5.1 and 5.2 in this chapter discuss the accuracy of predicting
figures of merit when the true value of 8 is uncertain, and Section 5.3 extends
the results to small groups of individuals. Section 5.4 briefly explores how
to ascertain adequate sample size for the calibration process and how to
translate the uncertainty in the forecasted distribution of the attribute vector
into uncertainty of the predictions.

5.1 Confidence Intervals on the Mean: Binary Models

Since the parameter estimate f can be regarded as an outcome of a
random variable @ that takes different values each time the sampling—
_calibration process is repeated, one can regard a figure of merit T(®,2), and
its mean T{®) across a heterogeneous group of individuals as random
variables that take different values each time the sampling—calibration pro-
cess is repeated. As discussed in Chapter 3, since for sufliciently large samples,
© 1s MVN distributed with mean @, (the true parameter value) and a co-
varia_ncc matrix X, that is approximately given by —{V7 log L(8)] !, one can
obtain the distribution of 7(®, a) and T(®) with statistical change ol variable
techniques. From that, confidence intervals for T{0,,a) and T(#,) can be
developed.

5.1.1  Exact Results for Homogeneous Populations

Let us consider binary probit models whose choice functions can be
expressed as
p = P(da’), (5.1a)

P2 = O(—0a"), (5.1b)
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that is, models in which the probit of the choice probabilities ®~ !(p;) are
linear functions of #. For notational simplicity let us represent throughout
this section ©(@a') by P, and ®{6,a") by p,.

Our objective is to develop a confidence interval for p,. We start by
finding a function of p, and the data (® and a) whose distribution is known.
Such a function, called a pivotal quantity, will enable us to obtain confidence
intervals.

Since ©® is MVN distributed with mean @, and covariance matrix L,,
®a" is normal with mean #,aT and variance aZ,a”. Furthermore, since
f,a" = @ !(p,), the random variable

[éﬂT — @ 1(P1):| /(aZqa’)'/?

is a standard normal pivotal quantity for p,. Letting n, denote the 100§
percentile of the standard normal distribution, we can write

Ba" — &~ !(p,)
Pr<— D E— =T = =ua,
r{ Hu +ayz aran’ 0t +ay2
which can be rewritten as '
Pr{—0a" — ;1 y@Ea") 2 < —0 7 (p)) < —@a" + 1y 4 ypp(aBea") ) = o
or
Pr{@a" — Ha+apa(afa ) < 07 p,) < OaT + e+ ay2(aBey )2} = o
But since ®(-) is a strictly increasing function, the above probabilistic
statement can be modified to read
Pr{®[@a” — e ay2(aXer") 2] < p; < O[Oa" + Hu +ay2@ea") ]} = o
A 1002%, confidence interval for p, is thus
{(D[EHT - ’T“ +1)12(3203T)1“2}, (-D[éa.r + ’I(l +a”2(azuaT)”'2]}. (5.2]
The reader can verify that replacing §a” by —#aT in Eq. (5.2) yields a 1000%
confidence interval for p;. _
We now turn our attention to the satisfaction. If Eqs. (5.1) arise from a
random utility probit model with 4 constant covariance matrix Z,, such that

var(f; — &;) = (I, - 1)EL(_}) = 0% the measured-attractiveness functions
V1(0,a) and V,(0, a) must satisfy :

V(8,2) — V5{0,2) = 0a"0;

this shows that the coefficient of an attribute in the measured-attractiveness
function in which it appears must be ¢ times larger than the element of &
associated with it. The relative satisfaction §'(8,a) = S(0,a) — V,(8, a) is given

e

e ——
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by [see Eq. (4.7)]

=V =W+ WV - WOV — Vo)a] + ap[(V; — Vy)/o]
= fa'c[®(0a") — 1] + op(ha”)
= o[ (02"} — 0a"D(-— Ba")]
= o[ ¢(—0a") — fa’DB(—ga")).

In order to express § in units of a certain attribute a;, the above expres-
sion must be divided by the coefficient of such an attrlbute in the measured-
attractiveness vector, 0;6, and since such a coefficient is proportional to ¢, we
know that ¢ will not appear in the new expression. For the rest of the dis-
cussion on binary models, we find it convenient to express 8’ in units of an
attribute a; for which 0; is unity; that is,

= [¢{— — 82’ ®(-0a")]. (5.3)

To transform the units of § in Eq (5.3) into those of attribute a,, the
right-hand side of Eq. (5.3) is simply divided by 6,.

If we represent by §, 5, and §' the expressions obtained by replacing,

respectively, @, &, and @, in Eq. (5. 3), a confidence intervai for S’ can be
obtained in the same way as was donc for p,.

Let us first investigate the properties of the function

Y(x) = plx) + xD(x),

which we call the standard probit satisfaction function. Since, as the reader can
check, y(x) = ¥, ®(w)dw, the standard probit satisfaction function is posi-
tive, increasing [ dif(x)/dx = ®(x)], and ranges from zero to infinity. Therefore,
one can define its inverse function i ~!(-), which goes from — o to oo as its
argument goes from 0 to oo. The standard probit satisfaction function is
tabulaled in Table 5.1,

Since, as can be seen from Eq. (5.3), S' = y(—6,a"), 0,a" = — ) 1(S') and
the random variable

— 00 < X < oo, (5.4)

[@a + §~1(§)]/(ak,a")"/2

is a standard normal pivotal quantity for 5. The same algebraic manipula-
tions used with p, yield the following 100%% confidence interval for §':

{w[_ﬁaT —Hu +u:)f2(azﬁ‘aT)”2]’ lfb[_gaT + 15 +a)f2(3zoaT)”2]}- (5.5)

The values of () can be read [rom Table 5.1.
Similar results can be derived for the binary logit model. If the model is

exp(#,a”) 1

1+ exp(g,a’y P2=17 exp(d,a’y ©:6)

1 =
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Table 5.1

Tabulation of the Standard Probit Satisfaction Function #(x)

x () x W(x) x W(x) X thx)

-39 0.0000 —1.9 00111 0.1 0.4509 2.1 2.1065
-38 0.0000 —-18 00143 02 0.5069 22 2.2049
—37 0.0000 —-L7 0.0183 0.3 0.5668 23 2.3037
-36 0.0000 —1.6 0.0232 0.4 0.6304 24 2.4027
—35 0.0001 -L.5 0.0293 0.5 0.6978 25 2.5020
-34 0.0001 -1.4 0.0367 0.6 0.7687 2.6 26015
—-33 0.0001 -1.3 0.0455 0.7 0.8429 27 27011
-32 0.0002 —-1.2 0.0561 0.8 0.9202 2.8 2.8008
-3l 0.0003 —1.1 0.0686 09 1.0004 29 2.9005
-30 00004 -10 (.0833 1.0 1.0833 3.0 3.0004
-29 0.0005 -09 0.1004 11 1.1686 31 3.1003
-28 0.0008 —-0.8 0.1202 1.2 1.2561 3.2 3.2002
—-27 0.0011 -0.7 0.1429 13 1.3455 33 3.3001
—-26 0.0015 -0.6 0.1687 14 1.4367 34 3.4001
~25 0.0020 -05 0.1978 L5 1.5293 35 3.5001
-24 0.0027 -0.4 0.2304 1.6 1.6232 3.6 3.6000
-23 0.0037 -03 0.2668 1.7 L7183 3.7 3.7000
-22 0.0049 -02 0.3069 18 1.8143 3.8 3.3000
=21 0.0065 -{.! 0.3509 19 1.9111 39 3.9000
-2.0 0.0085 0.0 0.3938% 20 2.0085

Ifx < -39, ¢(x) = 0; il x > 39, Yi{x} = x.

the derivation of a 100 confidence interval for p, parallels the one for the
binary probit model. The final result is

{1+ exp[~8a" £ 1, 4 y2(a%ea") 2]} 0 (5.7)

Since the relative satisfaction can be expressed as a function of the difference
in measured attractiveness [ see Eq. (4.19b)]:

8" =log[1 + exp(V, — V)]
and for the model in Eq. (5.6) ¥, — V, = 0a", we can write
§" = log[1 + exp(—8,a")]
and
—log[e* — 1] =8,a".
A standard normal pivotal quantity for 8" is
(@a" + log[5 — 1])/(aX,a”)/?,

I N—
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and a 100x%, confidence interval is

log(I + exp{—[fa" + 1 +ay2(aZea") 2 ]}). (5.8)

The application of these formulas is illustrated below.

Example Consider the non—car-owner segment of the population in the
example introduced in Section 4.2. Since the members of this subgroup of
the population can choose only between alternative | (not to travel] and
alternative 2 (travel by public transit), their choice process can be modeled
by the binary probit model

U,=¢,, Uy, =3~ 6ay — 6rp + &,

01 0
Ef_[o 0.1}

In the expression for U,, a; and r; represent values (in hours) for the walking
time to the transit station, and waiting and riding time, respectively.
The chotce functions of the binary model can be expressed as
Py = ®[(=3 + 6a; + 6r,)//0.2]
= O(—6.71 + 13.42a; + 13.42ry) (5.9

with

and

p2=1_P1,

which conform to the type of functions studied in this section.,

Let us assume that the values of the coefficients used in Eq. (5.9) are not
the true values but are estimates obtained from a data set, that is, Eq. (5.9)
gives the estimated choice probability for a given value of the attribute vector

B = ®(8a"),

where in our case § = (—6.71, 1342, 13.42) and a = (1, ay, ). Let us further
assume that the aforementioned hypothetical calibration process yielded

002 0 0
Ty 0 004 0.02 ],
0 0.02 0.06

and that we desire a confidence interval for p, for different values of a.

Since in the original example . was fixed and was equal to 0.33 hr, we
shall let only a; vary; thus a = (1, a,0.33). The confidence interval is ob-
tained by entering with 8, a, and £, into Eq. (5.2). For instance, il a; = 0.25
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{the access time from the center of the zone),
fa” =112, p,=0@a") =087,
and

002 0 0 L
aZsa’ =(1,0.250.33)| 0 004 002|025 |=0.0324.
0 0.02 033033

If a 90% confidence is desired, o = 0.9, 5,45 = 1.65, and Eq. (5.2) yields
. [©(0.82), ®(1.42)] = (0.79, 0.92).

The same calculations can be repeated for different values of ar. Although
in our example the results are only meaningful for values of a; between 0
and 0.5, Fig. 5.1 depicts the results for the full range. It can be seen from
the figure that the length of the confidence interval depends on the probability
of choice, with both high and low choice probabilities yielding short con-
fidence intervals. The reader should not be misled, however, because in
most demand-forecasting applications, one is interested in the relative error
that is committed in the estimation of p, and the relative error increases
with decreasing choice probabilities. Figure 5.1 also displays the length of
the confidence interval over the midpoint value as an indication of the
relative error. From Eq. (5.2) it is actually possibie to show that as 7, becomes
small (ie, fa” — — o)

O[fa" + »1““),,z(a)lﬂaT)”z]/(D[éaT — Bt +xy2(@Z@aN)2] o oo

08

Lengzh

Midpaint 0s

Q2.2

~0.1 (1) 0.1 .2 03 04 0.5 “00 0.2 0.4 05 08

Agcess time, =, (hrs) Midpaint

Fig. 5.1 Confidence intervals [or the choice prbbability of a binary probit model.
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and consequently
lcngth/midpoinl = 2.

This illustrates the inherent difficulty in estimating the choice probability
function for alternatives with small choice probabilities. The result also
holds for binary logit models.

A similar analysis can be done with the satisfaction. If @, = 0.25, the
confidence interval for §’ is

[4(— 1.42), y(—0.82)] = (0.035,0.116).

An approximate confidence interval in hours of access travel time can be
obtained dividing the values by 8, ; it is

{0.0026,0.0096) hr or {0.16,0.58) min. M

J.i.2  Approximate Results for Heterogeneous Populations

We now show how to build approximate confidence intervals for the
average of a figure of merit across a heterogeneous group of individuals.
Let 7(6,) be the sought average value which can be expressed as

T(Bo) = E/I[T(Gos A)]

T(0,) may be taken to denote an average choice probability Pi(@8,), an
avcrage satisfaction S$(6,), or any other figure of rmerit. The expressions
derived in connection with T(8,) will apply to all of these. As in the previous
section, we denote by T the true value 7(f,), by r the estimated value T(),
by T the random variable T(®).

A procedure stmilar to the one in the previous section cannot be employed
unless one can find a pivotal quantity for T. Since in the most general case
the distribution of T does not seem to depend on #, In a closed form, a
pivotal quantity for T'is difficult to obtain, and alternative confidence interval
building methods have to be developed. We do that now.

Assurne that the MNP model was calibrated on 2 large sample with
the maximum-likelihood method and that, consequently, @ is approximately
MVN distributed with mean 6, and covariance matrix X,. Let us further
assume that the sample size was so large thal the entries of £, are very small.
A criterion to determine whether the entries of £, are small cnough is
provided later.

Let us expand T(®) in a Taylor series around T(6,):

T(@) = T(0,) + (® — ,)[VI(@,)]" + Ry(®); (5.10)
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in this expression R,(@) is the remainder in the Lagrange form
Ry(0) = 4(0 — 6,)V2T(O)O - 4,)T, (511}
where

QO =0,+3b-0) forsome O<n<l.

The random variable T = T(®) is the sum of three components, the last
of which can be neglecled if we can be reasonably sure that the outcomes
of © are sufficiently close to 8,. This is so because R,(®) approaches zere
as (® — @,) — 0 faster than the other components of Eq. (5.10).

The consistency property of maximume-likelihocd estimators ensures that
this will happen for sufficiently large sample sizes.

If we want to check whether R,(@) is likely to be small enough relative
to T{A,), we might like to verify whether

Pr{[R,(@))/|T(0,)| < &} = o (5.12)

for some small relative error ¢ and high probability . Unlortunately,
Eq. (5.12) is not easy to use because the distribution of R,(®) is unknown.
Instead, we use the following inequality, which applies to nonnegative
random variables such as |[R.(®)|/|T(0,)} when a statement such as Eq. (5.12)
does not hold:

E{|R,(®/|T(®,)]} = 3(1 — o).
Thus to verily Eq. (5.12), it suffices to verify whether

E{|R,(®)]} < 6(1 — )| T(0,)],

or, since this is usually an order-of-magnitude comparison for which great
accuracy is not needed, whether

E{|Ry(©)|} < 8(1 — o)| T(H)|. (5.13)
Furthermore, since great accuracy is not needed either in the evaluation

of E{|R,(®)|}, we can use
Ry0) = 5(® — 0,) V' T(HO - 0,)" (5.14}

in order to derive an approximate upper bound lor E{|R,(®)|}. Because

V2T(f) is a known symmetric matrix, it can be diagonalized as
V2T(#)= CACT CC" =1,

where A is a diagonal matrix of eigenvalues. Letting 1 denote the absolute
value of the largest eigenvalue in absolute value, we see that if x is an arbi-

L
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trary row vector of dimension r (r is the number of parameters),
[xCACT™X"| = |(xC)A(xC)|
[ 0
=xCY 0 |4 - [(xOF

< (xO)IxC)" = AxCC™X) = ixx".
Consequerntly

|R2(0)] < 340 — 6,0 —0,)"

taf—

and
R S LA PR ;
Elle(O)ls 5E[Z (&, -1 a. = Z 22 tr(Tg) =,
2 il 2.2 2

where tr(X,) is the trace of L, (the sum of the elements in the main diagonal).
Equations (5.13) and (5.12) thus will be met if

32r(Zy) < 8(1 — )| T)] (5.15)
In words, it is reasonable to neglect R,(®) in Eq. (5.10) if the trace of X,

times the largest absolute eigenvalue of V2T(#) is much smaller (in absolute
value) than T'(@).

We now develop an approximate confidence interval for T(#,) assuming
that Eq. (5.12) holds. Since the remainder of Eq. (5.10) will exceed 5|T,)|
only 100(1 — oc’)% of the time, we can write

Pr{T(®) e [T(6,) + (O — 0,)[VT(0,)]" + 8|T(0,)|]} = o,

or using the abbre\A'latlon T(®,8,) instead of the linearization of T(®)
around 8,, T(8,) + (©@ — 0,)[VT(0,)]":

Pr{T(®,0,) - 5!T(8,)| < T(®) < T(0,0,) + §|T(0,)]} = .
The event in braces, which we call event 1, can be rewritlen as
[T(®) - 8|T(60,)| < T(0,0,) < T(®) + §|T(0,)|}

Since T;(@, Bﬂ) is a linear function of @ it is normally distributed with
mean T{0,) and variance ¢2, given by

af = VT(B,)Z[VT(8,)]".
Therefore the expression

[Ti'((:)’ gu) - T(Gu}]

oy
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is a standard normal random variable and the following event (event 2)
occurs with probability e:
{T,(@, 0,) — N1 +ay200 < T(B,) < (®,6,) + et + 02001

If T,(8, 8,) were known, event 2 would be a 1000, confidence interval for
T(#,), but since it is not, we use the information given by event 1 to build
such a confidence interval.

From the basic laws of probability we know that events 1 and 2 must
occur concurrently with a probability «” such that

e =a+a —1

(the reader can easily verify this from Venn diagrams). However, if events 1
and 2 occur, event 3

{T(G) ~ H +ay201 — 5|T(Ga)| <T@, < T((:)) + a2l + 5]T(90)|}

also occurs, and therefore must occur with at least probability «” > o+a — 1.
If & is below the accuracy level desired, the term 6| T(6,}| can be dropped
from event 3 and we have

PI'{T(HD) 15 [T((:)) + Ta +a),126'1:|} >a+o —1.
Consequently the expression

MOE M1 +ay201) (5.16)

is at least an o + o' — ! confidence interval for T(8,). As usual, since o, is
a function of #,, we approximate it by

of = VT(GYE,[VT(8)]" {5.17a)

It should be noted that since o + o’ — 1 < &, it is not possible to obtain
a confidence interval with confidence level greater than o; therefore we
should like to select o as close to one as possible. Equation (5.15), however,
indicates that

o <1 — (2tr(L,)/20T(8)) (5.17b)

in order for Eq. (5.12) to apply; consequently, this is a practical limit on
the confidence level we can put on Eq. (5.16). The above inequality, however,
should not be taken too strictly since several conservative assumptions
were made in developing it,

The general procedure to obtain a confidence interval is

Step I Calculate T(8), VT(#) and V>T(8) as outlined in Chapter 4.
Step 2 Check whether Eq. (5.15) can be satisfied for smail § and large o'
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Step 3 Evaluate Efl. (5.17a) and replace the result into Eq. (5.16) for a
100[o — {Atr{Zy)/26T(8)}]% (or more) confidence interval on T(8,).

Example Letusobtain a confidence interval for P,(6,) and the subgroup
of the population of the example in Section 4.2 that does not own cars.
As in Section 5.1, the model 1s

Ul = él:
U, =0, — byar — O3rp + &5,

0.0
E"_[o 0.1}

As was done in Section 4.3, we assume that the attributes of a choice
maker randomly selected [rom the population of non—car-owners A, and
Ry are approximately MVN distributed. In our case E(Ry) = 0.33, E(4,) =
0.25, var(Ry) = 0, var{A,) = g5, and cov(Rr, 4,) = 0. As discussed in Sec-
tion 4.3, the perceived-attractiveness vector ol a random individual is MVN
distributed with mean U, and covariance matrix £,;

with

Uy=0, U, =8, — 0230, — 0.33¢,,

0.1 0
£, = )
v [0 0.1 + B%;J

Step I The choice probability P, {#) for such an individual is

—8, + 0.250, + 0330,
02 + 62/96)72  {’

and

P()=Pr{U,> U,} = Pr{lU, — U, <0} = cb{

(5.18)
and if we assumc that as in Section 5.1 the calibration process yielded'
#=(3,6,6)
and
0.005 0 0

T, ~|0 001 0005],
0 0005 0015

! The & vector differs from the one in Section 5.1 because in here the model is expressed in ils
random utility lorm.
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we can find P(#) by substituting 8 in Eq. (5.18):
P,(0)=0.737.

By evaluating P,(#) in the neighborhood of 8 = (3,6,6), we can evaluate
VP ,(#) and V2P,(#) numerically. Table 5.2 contains values of P,(8) for ten
points, 8, to 8,,, in the neighborhood of §. With these values it is possible
to approximate numerically the first and second derivatives of P,(#). As an
example, the reader can check that

cPy(8) _ Py(0,) — Pi(8)

- = —0.432
a0, 0.01

and

‘2P1(§) _ P1(03) + P1(31) - Pl(ez) — Py(83) —0118
8,80, (0.01)(0.01) o

Y]

[

With the same method one finally obtains
VP (#) =~ (—0.432,0085,0.142)
and

—0.355 0118 0.118
VIP (@)~ | 0118 —0034 —0.039 |.
0.118 —0.03% —0.039
Although for this particular problem it would have been possible to calculate
the first and second derivatives of P,() directly from Eq. (5.18), we preferred

Table 5.2

Ten Values of P,(0) in the Neighborhood of &

10
numbecr k 0, 0, Oy P(6;)
| 3 6 6 0.7366349576
2 3.01 6 6 0.7323111345
3 3 6.01 6 0.7374850896
4 3 [ 601 0.7380539532
5 302 6 6 0.7279518241
& 3 6.02 6 0.7383318445
7 3 6 602 0.7394690183
8 ol 6.01 6 0.7331730410
9 3.01 6 601 0.7337419420
10 3 6.01 6.01 0.7389001971

Qe
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to obtain them numerically since this can be done even in more complicated
problems.

Step 2 Since according to the Gerschgorin theorem? the eigenvalues
of V*P () belong to the following intervals:

4y €[—0355 £ 0236], 4,e[—0.034+0157], J;e[-0039 +0.157],

we know that 4 <0.355+ 0.236 = 0.591. Thereofre Eq. (5.15) will be
satisfied if

0.591() tr(E) < (1 — o)5|P(0)] = 0.7375(1 — or).

Since tr(Z) = 0.03, the left-hand side is 0.00Y; since this is much smaller
than 0.737, it allows us to proceed.

Step 3 If =01, o/ <088 Thus at the & = 0.1 accuracy level, the
maximum level of significance is 0.88. An 80% (or higher) confidence interval
can be obtained by setting o= 092 since o + o — 1 = (.8,

We can now use Egs. (5.17a) to obtain

o, = +4/0.00143 = 0.03§,

and an approximate 80%, (or better) confidence interval is

{0.737 £ 1.75 x 0.038) ~ (0.67,.0.8). M

It should be remembered that the bounds used to develop Eq. {5.15) are not
necessarily tight and that consequently on many occasions, it may be per-
fectly warranted to use the technique with values of o larger than those
allowed by Eg. (5.17b). In the cases for which this is not possible, the reader
may wonder how one can cope with the problem. This is indeed a legitimate
concern, which will be addressed in the next section for the seneral multi-
nomial case.

5.2 Confidence Intervals on the Mean: Multinomial Models

J2.2.1  Analytic Confidence Intervals

For multinomial logit medels with specfications that are linear in the
parameters (V = #[a], where [a] is an » x [ matrix whose entries are either
known constants or elements of the attribute vector a) it is possible to derive

2 This theorem was used in connection with the prool of Lemma 3.1 (sce footnote I5 in
Chapler 3).
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a joint confidence region for the choice probabilities of a homogeneous
population and for the ratio of the choice probabilities of any two alternatives.

Since
log(p:/p;) = Vi(8,a) — V,(8,a) = B[a]8",
(6T represents a column vector with zero entries except for §; =1 an_d
;= —1) the random variable log(;/P)) [as before P; denotes Pi(®,a)] is

njormally distributed with mean log(p,;/p;) and variance

o2 = é[a]"E,[a]o™.
Thus
[IOg(pl'/Pj) — log(p;/p;}]/o,
is a standard normal pivotal quantity for p;/p;, and
exp{log(5:/B;) + 71 +ay20,}
or .
' [(ﬁi/ﬁj) exP(i'?qua),'z‘Tp)] (5.19)

is a 1000%; confidence interval for p;/p;.
Analogously, letting

-1 -1 1] -1
1 0 0] O
A 0 1 0 0
0 0 0/ 1

be a [I x (I — 1)] matrix, we can write
log(P'/P,) = [log(P,/P,), . . . ,(P/P})] = VA = B[a]A.

Since log(P'/P,) is a linear function of @, it is MVN distributed with mean
log{p’/p,) and covariance matrix

%, = AT[a]"E,[a]A.
Thus, the quantity
[log(P'/P)) — log(p'/p)]Z; '[log(P'/P,) — log(p'/ps)]"

is a pivotal quantity that is y* distributed with 7 — 1 degrees of freedom.
The corresponding 1002%; confidence region for log(p’/p,) is

[log(®/8,) — x]Z, '[log®@/p,) — x]" < i - 1.0 (5.20)

which is an [(I — 1)-dimensional] ellipsoid centered at log(p’/p,). Equation
(5.20) aiso defines a confidence region for (py,...,p;) because for every

ek
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value of x = log(ps/p,, ..
vector.

Equation (5.20) can be generalized for MNP models with covariance
matrix independent of @ since according to Con ecture 3.1 and Fact 3.1
there is a one-to-one relationship between (p;p,) and the reduced-
attractiveness vector V' = (¥, - V|, ..., ¥, — V) (note that p’ and P, are
not the true values in this context). Letting fi-) denote such a relationship,

V' =1(p'/p,),

-»P;/p;) there is one and only one probability

the confidence region is
[f(ﬁ’/ﬁl) - f(p’/pl)]zp_ l[f(ﬁ’/ﬁl) _-f(P'/Pl)]T = Zfl— L.a)- (5.21)

Equations (5.20) and (5.21) can be used for hypothesis testing quite handily
in efforts to validate a given discrete choice model. Unforuntately, although
possible, the function f(-) is not so easy to evaluate for the MNP model.?

In cases for which one must consider a heterogeneous population or a
model that is not linear in the parameters it is possible to use the large sample
method of Section 5.1.2. As a matter of fact such a method can be exercised
exactly as explained there since nowhere in the explanation did we use the
fact that the models were binary.

5.2.2  Simulation Method for Smaller Samples

In cases for which the calibration sample size is sufficiently large to
assume @ is MVN(8,,L,) but not large enough to permit use of the ap-
proximation method described in Section 5.1.2, it is useful to regard g,
and T(f,) as random variables in a Bayesian sense and use simulation as a
means to derive confidence intervals.

Imagine the set of all experiments that can possibly be performed to
estimate a parameter vector of the same dimension as 8,.

This set of experiment need not be restricted to one scientific discipline
or one particular data set; it encompasses ail possible circumstances. Con-
sequently, the true values of the parameter vector will vary so much

3 A possible evaluation method would consist of finding with a calibration code

1

max 3 p;log P0,a),
o i

where the specification of the model is sel equal to

Eo=Efa), WK=0 V=0

ir

i=2...,L

As was demonstrated in Chapter 3 the solution to this problem is values of 0; for which Pi(0,a) =
pi; by construction, these values are the sought ¥; — ¥, values.
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across the set that its elements can be visualized as outcomes of a random
variable @, having an almost-constant probability density function fp (-)
that takes on very small values. Bayesian statisticians call such distributions
diffuse because the probability density is assumed to be diffused very homo-
geneously all over #£". The MVN distribution with covariance matrix given
by kI (k large) is an example. Furthermore, if in the present case the researcher
knows very little about the true value of the parameter 8,, he can surcly
think of #, as a random drawing from the above set. Since, as is shown below,
the exact form of the distribution does not affect the results—only the fact
that it is diffuse—this hypothesis is not particularly restrictive.

With this in mind we may endeavor to obtain the distribution of the
also random T{(8,), conditional on the results ol the calibration. If we succeed,
the 100[(1 — «}/2] and [0O[(1 + 2)/2] percentile points of the resulling
distribution will, by definition, bracket T(6,) with probability o, and will
therefore be a 1002% confidence interval for T(8,). In other words a researcher
who uses this technique to build many 100x%, confidence intervals over
his life span will have been right 100a%, of the time. We proceed now to
do that.

Since we know that the distribution of @ conditional on @, =8, is
MVN with mean #, and covariance matrix X,, we can obtain the joint
distribution of ®, and ©:

Pr{®,c (0.6 + d0),®,c(8,,0, + d0,)} = $(016,,Z,)f.(8,) db de,

and the conditional density of ®, on 8:

Jod0,10) = (010, 20)fo, 8] [, (616, Eo)fe, (8,16,

Since f, () is diffuse, it will take on practically the same value for all values
of 9, for which ¢( |6,,,E,,) is substantially different from zero; thus f; (0,)
can be replaced by f5 (8) in the denominator and the numerator. Conse-
quently the conditional density of ®, on 8 simplifies to

Jo0,|0) = ¢(00,,Z;) = $(6,]0. Z,),

indicating that @, is MVN distributed with mean # and covariance X;.* The
percentiles of T{0,), T(; —2. and T, 4, can be oblained [rom the distribu-
tion of @, through the change of variable T = T(®,).

Unfortunately the change of variable T(@®,) is complicated and Ty _42
and T, 44y, cannot be obtained in closed form from @ and I, in the most
general cases; however, the Monte Carlo simulation strategy described in

* This is a well-known result in Bayesian decision theory.
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Section 2.2.2 can be used to develop approximate values for T, —gy2 and
Ti1 +ay2. This is done as follows:

Step I 'With the simulation method described in Section 2.2.2 sample K
observations from a MVN(#, Z,) distribution 61y, - - By and calculate
Ty - - - » Tigy, Using the transformation Ty = T(0).

Step 2 Plot the sample cumulative distribution lunction of T and usc
the percentiles of the sample, Tiiyay2 and Ty, for the confidence
interval.

Since for large values of K the percentiles of the sample ’T",, are approxi-
mately normally distributed with mean the true percentile T, and variance

Var("fy) = fB{1 — ﬂ)/Kl:f(Tﬂ)]l,
where fr(-) is the density function of T(@®,), the quantity

er 2 /B(1 — ﬁ)/K[l/f'r(Tﬂ)]

gives an indication of the size of error likely to be encountered. If f(-) is

normal with variance o7, the following are values of er for different values
of f:

0.25 0.9 095 0.99
and and and and
i 0.5 075 0.1 0.05 0.01
. 1.253 1.363 L.709 2113 3.733
——0 — oy - O — — oy
1 \fK T JK b \/K T \/E T \/R 1
The value of ¢ can be inferred from the sample standard deviation of
Ty, - .-, Ty Note that according to this method confidence intervals for

high values of o are more difficult to obtain since more observations are
needed to obtain a similar precision.

To illustrate typical values of K needed, consider a 90%, confidence
interval that is to be determined with a typical error of no more than 0.054.
This requires a value of K such that

1.709//K = 0.05

and K = (1.709/0.05)* ~ 1169 observations.

Thus, in order to get a confidence interval, one may sometimes have to
perform of up to 1000 predictions. In some other cases fewer predictions may
be sufficient, but in all cases hand simulations seem out of the question.
On the other hand, if the function T(0) is computerized and does not take
much computer time (this is in general true if one uses the shortcut prediction
techniques described in Chapter 4), sampling @ and calculating 7(6) a few
hundred times is not a problem.
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5.3 Prediction Intervals

5.3.1 Analytic Method

Let us assume that instead of seeking the value T(@,} of a figure of merit
for a given distribution of the attribute vector F,(a), we are interested in
obtaining the actual accumulated value of the individual figures of merit,
D=1 (U (M and U, are, respectively, the number of individuals in the
group and the perceived utility vector of the mth individual).

If the number of individuals in the group is very large, the weak law of -

large numbers ensures that the actual accumulated value of the individual
figures of merit equals the value of the mean T{8,) times M. Thus, in such
a case a confidence interval for the accumulated value of the individual
figure of merit, which we call a prediction interval, is given by M times the
confidence interval for Ti(8,} and the methods in the previous two sections
can be applied. On the other hand, if M is small, the actual accumulated
value cannot be predicted deterministically even if T(@,) is known, and
prediction intervals must be obtained in a different way.

Homogeneous Population Groups

Since for a user who is sampled at random from the population the
distribution of U is known (provided a and @ are known), il is possible to
determine (at least conceptually) the distribution of 7 for a person who is
sampled at random from a homogeneous group with A = a.

Under these conditions the accumulated value of 1, 7., is the sum of
M independent and identically distributed variables, t,,,, = (U

M
Toe = Z T(m)=

m=1
and for moderately large values of M (although not large enough to neglect
the variability of 7,.) the accumulated value must be normal with
E(z,) = ME,[t(U)] = MT(#,,a), {5.22)

where as usual the expected value of the individual figure of merit is denoted
by T(8, a). The second moment about the origin of 7, can be obtained from
the distribution of U (at least thearetically) and is, therefore, a function of
# and a which we denote T(#,a). Therelore

var(r(z,,,)) = ?[001 a) - [T(eoaa)]z

and _
var(,) = M{T(0,,2) — [1(6,,a)]?}. (5.23)
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Let us see now how one can caiculate var(z,,) in some simple cases (see
also Section 1.3).

If, for example, we are interested in the usage of the ith alternative,
7(U) should be defined as follows:

1 if U= max (U)
T= / d
0 otherwise.

i Then E(T(m}) = T(ﬂasa) = PI(Bo:a)s and Siﬂce Tz =T, E(T(zm)) = E(T(m]) =
T(0,,a) = P,(0,,a). Equation (5.23) yields

Var(t:u:) = M[Pi(eas a)][]- - Pi(eos a):l
If, on the other hand, t(U) = max,(U)), we know that
E[t(U)] = S(6,, ),

which is given by previously discussed formulas for both logit and probit
models. It can also be shown that for the MNL meodel (see Section 1.3.1)

var[t(U)] = var(U)) = i=?
and that for the MNP model
var[t(U)] = var[max{U})],

which can be approximated with the lormulas of Section 2.2.3 (the result
1s exact for the binary case).

With expressions for Eqgs. (5.22) and (5.23) readily available, one can
obtain a prediction interval for 1_,. Write

[t — MT(O,a)] = M[T(6,,2) — T(®,a)] + [1,. — MT(@,,2)].  (5.24)

The first term on the right-hand side, for sufficiently small values of s,
can be considered normal (see the linearization method in Section 5.1.2)
with zero mean and variance

ai = M*var[T(©,a)] ~ M?[V,T(8,a)|E,[V,T(d,2)]". (5.25)

Also, as just discussed, if M is sufficiently large the central limit theorem
applies and the second term of Eq. (5.24) is also normal (7, 1s the sum of
M independent and identically distributed components). It also has zero
mean and variance ¢, which can be approximately expressed as a function
of & by entering with 8 in Eq. (5.23).

Since the two right-hand-side terms of Eq. (5.24) can be considered
mdependent (the first one arises from a calibration experiment and the
second [rom the selection of a random group with M people) the left-hand
side is normally distributed with zero mean and variance (62 + o2), and
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the random variable
(rae — MT(O,2))/(0} + o)'/?
is a standard normal pivotal quantity for t,,. Therefore a 1000% prediction
interval for ¢ is
[MT(a! a) + 1. +=;,'2(0'|2 + o', (5.26)

which solves the problem. _
Note that by increasing the sample size of the calibration stage, ¢; is

made smaller and one can reduce the length of the prediction interval:

however, il is impossible to decrease the length beyond 2801 42001

Example We return to the binary probit example of Section 5.1.1 in
which the specification was
p1 = ®(fa"), pa=1-—py,

with §=(—6.71,13.42,13.42) and a = (1,a,,#y). Let us find a prediction
interval for the usage of public transit (alternative 2) for M = 100 and
a=(1,0.250.33)i

002 0 0
L,~|0 004 002].
0 002 006

Since in this case I, is small enough (the reader can verify this) and M
Is within the range where the central limit theorem applies, Eq. (5.26) will
be used.

We first calculate of. For the usage ol alternative 2 we have

VaPz(a, a) = —qb(ﬁaT)a
= —¢(1.12) x (1,0.25,0.33)
=(—0.213, —0.053, —0.071)

and using Eqg. (5.25), o2 = 100? x 0.0014 = 14.
We now calculate o}, assuming that 8, = 8. For the usage we have

GI?i = var(r“) = M[l - Pl(g, a)] [Pz(a 2)]
= 1009(1.12)[1 — ®(1.12)]
=100 x 0.114 = 114,
Since P,(8,a) = ®(—fa) = 0.13, a 90 prediction interval is

(13 i 7?(] +a)’,'2-\,’ 114 + 14) = (13 i 83) = (47,2[3),
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and we can expect between 4 and 22 out of the 100 randornly selected people
10 become users of alternative 2. W

Heterogeneous groups

For heterogeneous groups of people the technique is identical. Instead
of Eq. (5.24) we have

[t = MT@)] = M[T(B), — T®)] + [r,. - MT(6,)], (527

and in the same way it is possible to develop-an approximate confidence
interval based on the variances of the first and second terms ol the right-hand
side of Eq. (5.27). o7 is given by the right-hand side of Eq. (5.17a), premulti-
plied by M?. The variance of the second term o7 depends on how the group
of people that we consider was gathered. In most cases it is reasonable to
assume that the M individuals are independent drawings from a subgroup
of the population with known distribution of the attribute vector F (), and
the variance of 7, is M times the variance of t(U) for one such drawing.
The variance of (U) can be calculated as follows: first evaluate

E[t(U)] = E{Ey[<(U)|A]} = E,[T(6.A)] = T(6)
and
E[(U)*] = E,{E[«(U)* A} = E,[T0,A]] = Teo),
using a prediction method (cf. Chapter 4), and then set
oft = var(r,.) = M[T(8) — T(0)?]. (5.28)

Equation (5.26) with T(8, ) replaced by T(8) then applies. _
Note that when we predict usage, U) = 7(U); consequently T(d) =
T(8) = P(6), and Eq. (5.28) is simply

it = MP{B)[1 — P4B)].

For the satisfaction the technique involves predicting its second moment
about the origin, 5(8), but the process is identical to prediction of §(d);
instead ol averaging $(@, A) with the prediction methods of Chapter 4 we
average S(0, A), which is given by

S(0,A) = S(0,A)? + 172
for the MNL model or by the approximation formulas for the MNP model.

Example Let us find a prediction interval for the usage of alternative 2
in the example in Section 5.1.2. A group of M = 100 randomly selected
individuais from the whole population of non-car owners is considered.
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Since from the example there we found
P =0.737 and  V,P,(#) = (—0.432,0.085,0.142),
we automatically have
P,(8) = 0.263 and V,P,(@) = (0.432, —0.085, —0.142).
Also from the example we know that o7 = 0.00143, and therefore
ol = 1002 x 000143 = 14.3.
o2 can be obtained with the expression that was derived above for the usage:
o5 = 100(0.263)(0.737) = 19.3.
Thus 7 = 5.8 and the approximate 90% prediction interval is

{26.3 + 1.645 x 5.8) = (16.8,35.8),

that is, we know that very likely between 16 and 36 pcople out of 100 ran-
domly selected individuals would elect to use public transit. W

3.3.2 Simulation Method

When either I, is too large or M is too small to be able to approximate
the two terms of Eq. (5.27) by normal distributions the problem is more
involved; however, a simulation procedure similar to the one described to
develop confidence intervals can be used. .

If we regard @, as the cutcome of a random variable @, whose distribution
conditional on @ and I, is MVN(@, £,), we can develop (at least conceptually)
the distribution of 7(U) for a randomly selected individual, since the con-
ditional distribution of U given 6, is known. Although developing the
analytic cumulative distribution function of t(U) is difficult, Monte Carlo
simulation yields it readily. The procedure parallels an imaginary experiment
in which, first, we would select a value of #,, and then sample a person from
the population, observe U (this value would depend statistically on the
value of 8, previously determined), and calculate z(U).

After many repetitions it will be possible to estimate the percentile
points of t{U), which may then be used as prediction intervals. A IQOa%
prediction interval developed in such a way must, of course, be physically
interpreted in the same way as the Bayesian confidence intervals developed
in Section 5.2.2. The procedure to obtain an observation of z(U) is as follows:

Step I Sample 8, from a MVN(@, ,) distribution.
Step 2 Sample a from F ,(a).
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Step 3 Calculate V(8,,a) and L.(0,,a) with the values obtained in
Steps [ and 2.

Step4 Sample £ from a MVNJQ, Z:(0,,a)] distribution and calculate
t(U) = z(V + &)

With a computer, obtaining t(U) takes milliseconds, and it is not difficult
to calculate t(U) many times. If M = 1, the percentile points of (U} can
be obtained by repeating the above procedure. If M is small, say M < 20
or 30, Steps 2—4 of the above procedure can be repeated M times to give
M observations and a value of 1,.. Repeated observations of 7,, will yield
the prediction interval. If M is [arge, but we still cannot obtain the prediction
interval numerically because I; is too large, it is not necessary to repeat
Steps 2—4 M times since for a given value of 8, we know that 7, is normally
distributed with mean MT(8,} and variance M[T(8,) — T(8,)*]. The proce-
dure can thus be streamlined as follows:

Step I Sample 8, from a MVN(@, Z,} distribution.

Step 2 Use one of the methods in Chapter 4 to calculate MT(8,) and
M[T(ga) - T(go)l]'

Step3  Sample 1, from a N{MT(8,), M[T(8,) — T(6,)*]} distribution.

The confidence intervals can be derived from the string of t,.s. Note
that Step 2 of this process may be relatively time consuming (for several
hundred repetitions) unless a shortcut prediction method is used. Also note
that if M is very large, for any given §,, the standard deviation of 1,_ is very
small and 1,  ~ MT(6,). Thus, the simulation process requires neither
Step 3 nor the calculation of M[T(8,) — T(8,)*]. Tt coincides with the
confidence-inlerval calculation method given in Section 5.2.2.

5.4 Other Considerations

54.1 Uncertainty in the Distribution of the Attribute Vector

When the distribution of A is estimated with an inaccurate method the
errors introduced will be reflected in the final forecast just as the errors
in the estimation of 8, affected the results of the forecasts. The techniques
used to obtain confidence and prediction intervals when the value of 8, was
uncertain can be extended easily to capture the uncertainty in the distribution
of A.

Let the true distribution of A be F{a [£,), where £, is an unknown vector
of parameters whose values must be forecasted inaccurately. For instance,
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with prediction methods where the distribution of A is approximated by
the multivariate normal distribution, the vector {, includes the true (up-
known mean vector and covariance matrix of A, A, and Z . With this in
mind, and treating ¢, as an outcome of a random variable Z,, in the same
sense as @, was treated as an outcome of @,, we can express our uncertainty
In §, by saying that Z, is F,(x) distributed, where the mean of Z, is close
to the forecasted value § of {,, and its variance indicates the degree of un-
certainty placed on .

The simulation process for prediction interval development is almost
identical to the one in Section 5.3, except for Step 1, which is as follows:

Step I Sample 6, from a MVN(#, Z,} distribution, and sample ¢, from
Fzq(x). Of course, {, determines the distribution F{a) of A. The rest of the
process is analogous.

An analytic prediction-interval construction method can also be devel-
oped in this case if in addition to the conditions of Section 5.3.1 we can
assume that { is an observation from a MVN distribution with mean £,
and known covariance matrix L;. The procedure involves linearizing

T0]5) = [, 70, 2)F a|0) da

with respect to both 0 and ¢, and writing [T(®|Z) — T(8,|¢,)] as a normal
pivotal quantity with zero mean and known variance (function of £, and
)

5.4.2 Sample-Size Considerations

In the discussion of Chapters 3 and 5 we saw, respectively, how it is
possible to derive the distribution of @ from the results of an estimation
process, and the distribution of T(®) and 7., from the distribution of ®,
This is important because if, with these techniques, we find that not enough
accuracy was obtained, if is possible to decide whether or not to collect
more data. However, since in most instances such data re-collection is not
desirable, an approximate sample-size selection guideline is suggested below.

A discrete choice model is not uvseful unless it can reproduce to a pre-
specified degree of accuracy the [ractions of the popuiation that select each
alternative. Since it is reasonable to require that this be the case for the
population from which the data were gathered, an a priori check to ensure
this should be performed.

Let us assume that we use a random sampling mechanism to obtain a
disaggregate data set from a given population, and that we estimate the

L .
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fraction of the population that selects alternative i with the following two
methaods:

Method o Direct Estimation For each observation n, let X, be a
random variable that is set equal to one if Cwy =1 and to zero otherwise.
Under these conditions, the maximum-likelihood estimator of Di s

N
ﬁi= Z X(H)/N'
n=1

Method b Indirect Estimation Assume known the distribution of the
attribute vector F (a); then, obtain a value for 8 by calibrating a discrete
choice model P{(#, a) with the data, and estimate p; with P(8).

We note that p; = E,[P{f,,A}] [assuming that P(8,,a) is a correct
specification]; thus p, is a function of 8, and the invarianl properiy of
maximum-likelihood estimators® suggests that

pi = EA[Pi(és A)] = P;(g)-

Consequently, if the specification of the choice model is correct, Methods
a and b yield the same answer. This is important because the accuracy of
P;(8) can be analyzed from that of p;, which is easier to assess,

If N is large, p; is approximately normal with mean p; and variance
pi(1 — p;)/N; therefore the relative error & = (P: — p;)/p; is also normal with
Zzero mean and variance

var{e) = (1 — p)/Np;.

Since the relative error will rarely exceed 1.5/{1 — p;)/Np; in absolute value,
that expression can be used as a criterion to select N. To be fair, of course,
one should select the alternative that is selected by the fewest people in the

population since 1.5\/1 — p;/Np; decreases with p;.
The minimum number of observations is then given by

N 2= 22(1 — p)/pic®

For instance, if we know that the approximate shares of three alternatives
in the population we are about the sample from are approximately 0.2,
0.3, and 0.5, and we are satisfied with 20% accuracy,

22 08 290
~T2Foz T

* The invariant property of the MLE estimators follows immediately from their definition. Tt
is as follows: 1T @, has a one-to-one relationship with 0. [0, — 8(0,) and 0, = 8(0,)], & = 0'D).
In our case and to be rigorous, we would have to prove that there exist » — I functions that
deline a one-lo-onc relationshup between 0, and Pag,).
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Although this value will in most cases be a goed preliminary indicator of
the required number of observations, the final decision must be deferred
until after calibration. This is important to remember because the expression
does not strictly apply to non-random sampling stralegies since the objective
of these 1s to reduce the value of N by sampling from very different substrata
of the population. Postcalibration analysis is also necessary because the
ultimate role of the model is predicting a figure of merit other than p, (other-
wise we could have used method a, above, which does not require a choice
model) and such a figure of merit usually will be more or less sensitive than
p; to errors in 8.

5.5 Summary

In order for discrete choice models to be really useful it is necessary to
find ways of assessing the accuracy of their predictions. Inaccuracies in the
forecasts have three basic sources: specification errors, insufficient or poor
data, and poor or erroneous prediction of the distribution of the attribute
vector.

Specification errors as well as some of the consequences of deficiencies
in the data are explored in Section 3.1, where it is suggested that the MNP
model was quite robust in the presence of some of these phenomena. There
it is shown how the problems could be handled and identified by manip-
ulation of the specification of the covariance matrix of the disturbances and
by proper interpretation of the results of calibration. Yet another type of
specification—data problem is also identified in Section 3.4.3, where il was
argued that unless one has the right type of data with the right specification
one can hardly claim a discrete choice model to be behavioral and therefore
transferrable and valid for policy analysis.

In the analysis of the present chapter the aforementioned problems were
assumed solved, which left us with two remaining sources of inaccuracies:
insufficient data and uncertain distribution of the attribute vector. As is
traditional in the econometrics literature the uncertainty of the predictions
is expressed by means of confidence and prediction intervals. Since not
much effort has been devoted by researchers to this subject [ only Koppelman
(1976b), who discusses some aspects of the binary logit model, and Daganzo
(1979a), who extended the results 1o discrete choice models, seem 1o have
investigated the problem in the open literature] most of the material pre-
sented in this chapter follows standard econometric practice as far as predic-
tion with nonlinear models is concerned.

The first three sections of the chapter cover errors in the estimation of
8, due to lack of data and how those errors propagate to the final prediction.

TSI e T =
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Sections 5.1 and 5.2 explore the subject for very large groups of people and
for both binary and multinomial models; the logic there parallels the devel-
opment of confidence intervals for points on the regression line of the
standard linear model Section 5.3 develops prediction intervals for small
groups of individuals. Section 5.4 addresses two miscellaneous items; Section
5.4.1 shows how it is possible to handle the uncertainty in the distribution
of the attribute vector; and Section 5.4.2 gives a simple rule of thumb to
select an adequate sample size prior to calibration.

Since most of the material in this last chapter is rather rudimentary,
it is reasonable to expect refinements to it to appear in the scientific literature
in the near future. Of particular interest would be approximate shortcut
confidence and prediction interval calculation methods when Iinearization
of the figure of merit is not possible. It is alsc hoped that in the near future
statistically optimal sampling strategies will be available.



Appendix A Some Properties and Definitions of
Matrices, Determinants, and
Quadratic Functions

Quadratic Function

1.l A quadratic function is a second-degree polynomial of several vari-
ables (x,,. .., x,). It can always be expressed in matrix notation as

y = R 4+ xP" + xQx", (A1)
where R is a scalar, x is a 1 x »n row vector of variables x,, Pisa l x nrow

vector of constants p;, and Q is a square n X n symmetric matrix of constants
gi;- This is easy Lo see, since for an arbitrary quadratic equation

y=a+ 3 bxi+ Y 3 o (A.2)
i=1 i=1j=1
there are values of R, P, and Q that reduce Eq. {(A.1) to Eq. (A.2). They are
R =a, p; = b;, q; = ¢;;, and, for the off-diagonal elements of Q, ¢;; = ¢; =
(Cij+ ‘-'_,'.')/2- .

The First and Second Derivatives of a Quadratic Function

2.1 It can be seen by manipulation of (A.2) that
V.y=P+2xQ and Viy =2Q,

where V,_y and V2y represent, respectively, the gradient and Hessian of y.
22 If the matrix Q is not singular it is possible to find its inverse, and
V. y vanishes at one single point x*. It is found by setting

P+ 2x*Q =0,
which post multiptied by Q! yields x* = —iPQ 1.
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Quadratic Forms

3.1 A quadratic form is a homogeneous polynomial of second degree. It
1s a quadratic function with R =0 and P =0, and can be expressed as

y = xQx’,
where Q is symmetric.

3.2 A quadratic form and its associated matrix Q are said to be positive
{negative) definite if y is strictly positive (negative) for all x different [rom the
zero vector {e.g., y — 3x? + x2 is a positive-definite quadratic form).

3.3 A quadratic form and its associated matrix ( are said to be positive
{negative) semidefinite if y is nonnegative (nonpositive) for all x (e'.g., y =
3x? + 0x2 is a positive-semidefinite quadratic form).

Diagonalization of Symmetric Square Matrices

4.1 A symmetric square matrix Q with real elements can always be
expressed as

Q =LAL", (A.3)

where L is an orthogonal matrix (i.e., a nonsingular matrix such that LLT = I),
and A is a diagonal matrix of real elements. The diagonal elements of A
are called eigenvalues (or characteristic values).
4.2 The eigenvalues A; are given by the n roots of the so-called charac-
teristic equation
Q-di=0,

where the vertical bars represent the determinant of the enclosed quantity.
The proof of these statements can be found in most introductory books on
linear algebra.

Properties of Definite and Semidefinite Matrices

5.1 A symmetric n X n matrix Q is positive (negative) definite if and

only if the eigenvalues are all positive {negative). This is easy to see because
n
y=xQx" =xLAL™X" = xL)A(xL)" = 3 Z,(xL)3,
i=1

and since if x # 0, xL # 0 (otherwise L would be singular since one of its
rows would be a linear combination of the others), y must necessarily have the
sign of the eigenvalues 4,.
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52 A similar argument shows that a symmetric matrix is positive
{negative) semidefinite il and only if the eigenvalues arc nonncgalive (non-
positive). Furthermore, if B is a nonsingular n x n square matrix, the
transformation

Q' = BQB'
does not alter the definiteness of Q.

5.3 If a symmetric matrix Q is positive (negative) definite, it 15 non-
singular, and its inverse is positive (negative) definite with eigenvalues given
by the reciprocals of those of Q. This is easy to see since from Eq. (A.3)
|Q| = TTr=1 % > 0 (or <0 for negative definite Q) and

Q !=LA'L"

54 Since zll the eigenvalues of a nonsingular matrix Q are different
from zero {otherwise |Q — 0I| = 0 and Q would be singular), any symmetric
nonsingular posttive (negative) semidefinite matrix has strictly positive
{negative) eigenvalues and must also be positive (negative) definite.

5.5 A symmetric matrix Q is positive definite if and only if it can be
expressed as Q = TT", where T is a lower triangular matrix with diagonal
elements given by the positive square root of the eigenvalues. This is equiv-
alent to saying that QQ can be expressed as

Q = TAT", (A4)

where T is lower triangular with ones on the main diagonal. These two
statements (as well as those in the next two paragraphs) are shown in most
introductory hooks on matrices. Equation (A.4) is usually called the Cholesky
factorization of a positive-definite matrix.

5.6 A symmetric # x n matrix Q is positive definite if and only 1 all
the principal diagonal minors are strictly positive. That is, Q is positive
definite if and only if

i 2z "7 4y >
421 {22 - CIz.‘>0 i=1.2 "
4 gz R

5.7 For negative-definite matrices the condition states that the principal
diagonal minors should be positive if i is even, and negative if { is odd.

Maxima and Minima of Quadratic Functions

6.1 I Q is singular, the unique point x* at which the gradient of the
quadratic function defined by Eq. (A.1) vanishes is a local-global minimum

-
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(mgximum) if and only if Q is positive (negative) definite. This is seen by
verifymg that for any point, x s x*, the differcnce y(x) — y(x*) is always
positive (negative):
¥{x) — p(x*) = xPT — x*P" + xQx" - x*Qx*T
= = 2xQx*t + 2x*Qx*T 4+ xQx" — x*Qx*T
=xQx" + x*Qx*" — 2xQx*T = (x — x*)Q(x — x*)T,
which if x # x* is positive (negative) if and only if Q is positive (negative)

definite. In the above derivation we used the equality P = —2x*Q [rom
paragraph 2.2,



Appendix B The Algebra of Expectations with
Matrices

1.1 Throughout this appendix we study a vector-valued random vari-
able X =(X,...,X,) and another random variable Y =(Y;,..., ¥;) that
is related to X by a linear transformation

Y = XA + B, (B.1)

wherc Aisann x I matrix of constants a;;,and Bisa 1 x [ vector of constants
b;. Equation (B.1) can be written in expanded notation as

=5 Xuau+b, i=1,...,L (B.2)
k=1

1.2 If we denote the means of X and Y by m, = [E(X,), E(X,),...,
E(X,)] and m, = [E(Y)),..., E(Y)], we can write

m, =m,A + B. (B.3)

This can be seen by taking expectations on both sides of Eq. (B.2} and using
the fact that the expectation of a linear function is the function of the
expectations.

1.3 If we let oZ;; denote the covariance of X; and X ; and aZ;; the
covariance of Y; and Y;, we can develop a similar relationship between the
covariances of X and Y. Let us first arrange the covariances of the elements
of X and Y in two square » x n and ! x | matrices Z, = {¢2,;} and X, =
{62:;}. These matrices are symmetric because the covariance of two random
variables has the commutative property.

1.4 Asis shown below, they are related by

L, =A"EA {B.4)
202
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The elements of £, can be expressed as
a5 = E{[Y, ~ E(Q][Y; — E(Y)1},

and, defining the expectation of a matrix as a matrix containing as elements
the expectations of the elements of the original matrix, we can write

L, = E[{Y —m)"(Y — m)]. {B.5)
Since by subtraction of Eq. (B.3) from Eq. (B.1)
(Y - my) = (X —m,)A,
Eq. (B.5) can be rewritten as
L, = E{[X - m)AT'(X - m)A} = E[A"(X — m)"(X - m)A].

Furthermore, since the expectation of a linear function is a linear lunction
ol the expectations, we can bring AT and A outside of the expectation and
have

L, =A"E[(X - m) (X — m)]A = ATE A,

which coincides with Eq. (B.4).

1.5 Covariance matrices must be positive semidefinite. This is true
because otherwise the diagonalization of a covariance matrix Z_ (see Appen-
dix A, paragraph 4.1)

I, =LAL"

would yield a negative element in A (Appendix A, paragraph 5.2) and this
would mean that at least one of the elements of the transformed random
variable XL, whose covariance matrix is A [this follows from Eq. (B4)],
would have a negative variance,

1.6 Il a covariance matrix is singular, at least one of the elements of
A is zero (from Appendix A, [Z,| =[];=, 4;) and the variance of one of the
elements of XL is zero. Consequently, that element is constant and there is
a deterministic linear relationship between the elements of X. In other

words, the values of X that can occur are concentrated in a hyperplane
of 2",



2Yr1 BYL ([193 JO WOJ10Q} FOUBLILA JIUN PUR URSW DISZ i uonouny uolm
pue (122 jo do1) uolduny UCIINGISIP SANBMWND [TLIOU prepuels ayy Jo wipedol ay; jo aanedau ayy A8 21qw) sty Jo sauo bl

suIgIew ayy ® sTaquinu 2y} 4q pajmatpur st [[25 Surpuodsaiion
3y} puy puE UAWNGIE AL JO SN[EA IN[OSOL LT INYB) ‘PEAI O], 6’/ JO IN[EA 2IN[OSqE wnwixew v 01 dn sjuawngie asnedau 10] £[uo pijes st

quIsIp 3ANBNIUNS ausIFOL 31t Jo wyiledo| ) Jo sanedou )

To6TePl
21843

(44954
1£699'9T

10401
SpeTI 0T

€LL38'8
SL6PE T

99rLO'L
161¥6'6

07597°¢
T0P87'9
6SLLYE
8T055°€
C60TR'T
6691

60

POLEL BT
8oL’ EE

PBEEETI
090L6°52

900TE 01
8pITC Ol

0F90L'8
PLSVO'PT

Srtaso
69LES6

S8PRO'S
£9696°C

EETOEE
BI9ZEE

LETOST
SBISST

80

07996°¢T
LETIOTE

A
6218T°¢C

698EE'01
£T0E6'81

905es8
LETSSET

LEETIL'O
CopeT'e

0Lv06Y
bpa9'c

PasTi't
08011

¥OLIST
L68IT1

Lo

88rBLEL
60SE8°TE

B0TLG'TT
LSTO9'FT

TELSTOT
TL8FE81

ILEpER
€9990°¢[

PI1ES
695PL'8

6LFEL'Y
8¥R9E°C

£6566T
80¥06T

GEBLLT
0LE6C7]

90

0s€09°¢1
COLOGIE

OLOGBL'TT
ECEEG'ET

POSLE6
T69LL°LL

8£TOT'8
os16sel

S00SE'9
L8S9E°8

LISPSY
£9180'c

SHFBL'T
¥650L'E

909pC'T
[6SL1'T

S0

Tlgerel
¥O0TE0E

tEBO9TT
89LLTET

LSF6L'6
£BPITLI

3ETI1'8
865TTTI

106919
8rSo6'L

0659y
608y
8ZSI9T
18915°C
1€0ZT'T
EPS90°1

¥o

PLOVTET
9ee9s 6T

Se9Tr'T1
16£C9°CC

0zZe19'6
#9991

SL66L°L
FOOLY'TT

c0886'S
0sPegL

POLRT'F
9TsEST

2%
08¢

8L100°1
012960

t'0

9L650°t1
£FC8'8t

LSSPETT
[6LB6'1E

PRIEYF 6
SLOTTOT

SLO6L'L
69LECTT

LIL08's
88c8TL
89800'%
TOSLT'Y

10¥82°¢
E9ne

680680
L5980

[Ai]

B6LLETL
91960°8C

61P90°TT
LIESETT

LYOLT'S
CLORSST

LILEYL
6898L01

6E9TY'S
90r6'9
160£8°¢
S6FToY

A A NS
95L6GT

POLBLO
STOLLO

1'0

099691
EBLLELE
18288°01
BIEEL'OT

[1690°6
[A4 2

0655T'L
£965¢°01

TLSPP S
L9L09°9

£8E59°E
6TESL'E

£8P96°T
[4082: 0

§1L69°0
SIE690

00

[l

Some Properties of the Multivariate

Normal Distribution

Appendix C
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A continuous scalar random variable X is standard normal dis-

tributed if its density function is given by

The Standard Normal Distribution and the Logistic Curve
1.1

— 0 < X < 0. (C.1)
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1.3 A standard normal random variable has zero mean and unit vari-

ance. Table C.1 includes values of —log[®(x)] [rom x

is a monotonically increasing function going from zero to one as x goes
For smaller values of x the approximation

from — oo to oo.

0.
(C3)

yields an absolute error for log @(x) smaller than 0.02 and a relative error

—-79 to x=

X — —00,

—log[(®(x)] = x*/2 + In|x| + 092,

1 —®(—x).

1.4 A continuous random variable is logistically distributed with mean

zero and unit standard deviation if its cumulative distribution l[unction is

smaller than 2% for ®(x). For positive values of x we use ®(x)

(C4)

— 0 < X < 00,

1+ exp(xn/\/g)’
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206 Appendix C  Some Properties of the Mulfivariate Normal Distribution
1.5 Table C.1 also gives the values of —logL{x) from x= —79 to
x = (). For smaller values of x Eq. (C.4) is approximated well by
—log[L(x)] = x/+/3, x— —co. (C.5)

Note that Eq. {C.3) is linear in x but Eq. (C.4) is (approximately) quadratic.
As with the standard normal curve for positive values of x we can use L{x) =
| — L{—x).

The Multivariate Normal Distribution

2.1 A vector-valued random variable X = (X |, ..., X,) is multivariate
normally (MV N) distributed with mean m = (m,, ... ,m,) and nonsingular
covariance matrix

O-%l 6%2 T a%rr
R TR
Jﬁl 0-32 T 0.,2"'
il its density function is .
Y ¢(x|m.I) = 24Z))"#?exp[ —(x — mE ™~ (x — m)"/2]. (C.6)

2.2 A very important property of the MVN family is that it is closed

under linear transformations. That is, if Y = (¥}, ..., ¥) is related to X by
Y = XA + B,

where A is an n % { matrix, and B a 1 x [ vector of constants, the vector Y is
MVN distributed with mean vector and covariance matrix given by (sec
Appendix B, paragraphs 1.2 and 1.4)

m, = mA - B (C7)
and
E, =ATZA (C.8)
If I < n and rank (A) = {, £, may be nonsingular, and the density function of
Yis
¢y(y | my L] Ey) (C9)
2.3 A consequence of this result is that the one-dimensional normal
cumulative distribution function (.’D(.\'|m, o), with mean m and variance o7,
is standardizable because it can be expressed as a [unction of the standard

normal curve. If X is normal with mean m and variance o2, the linear
transformation Y = X/¢ — m/o yields a standard normal random variable.
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Consequently

D(x|m, 0%} = Pr{X < x} = Pr{¥o +m < x}
=Pr{Y < (x — m)fo} = ®((x — m)/o)

and it is possible to determine ®(x|m, ¢2) from Table C.1.

The Chi-Square Distribution

3.1 A scalar random variable Z,, obtained from a set of n independent
identically distributed normal random variables X |, ..., X, by

Z,=3 X} (C.10)
i=1
has a chi-square distribution with n degrees of freedom (abbreviated as Te)
3.2 The probability density function of Z, is

2 —nf2
[{n/2)

where I7(') is the gamma [unction; its mean and variance are # and 2n,
respectively, ‘

3.3 Unlortunately, the cemulative distribution function neither assumes
a closed form nor is standardizable. Because of this, only the percentile points
of Z, can be given in a reasonable amount of space. Table C.2 contains the
upper tail percentile points of yZ, for up to 50 degrees of freedom. For more
degrees of freedom the 100« percentile of Z,, %& o, can be approximated by

Hf2-1_—xf2
X ex."

f2,x) =

2 2 2P
t{(u.a)""n 1_%-’_’11 % » (Cll)

where 7, is the 100 percentile of a standard normal random variable.

The Distribution of Some Quadratic Forms

' 41 TTX=(X,,...,X,)is MVN distributed with mean m and a non-
stngular covariance matrix I, the scalar random variable Z,,, defined by the
quadratic form

Z,=X-mE 'X-m), (C.12)
is xZ, distributed.

This is easy to see because L is positive definite [it is positive semidefinite
(Appendix B, paragraph 1.5) and nonsingular] and, consequently, so is



208

Appendix C  Some Properties of the Multivariate Normal Distribution

Table C.2

Percentile Points of the #?,, Distribution

degrees

of
freedom 0.900 0.950 0975 0.990 0995 0.99%
I 2.706 3.841 5.024 6.635 7.879 10.828
2 4.605 5991 7.378 9.210 10.597 13816
3 6.251 7.815 9.348 11.345 12.838 16.266
4 7.779 9.488 11.143 i3.277 14.860 18.467
5 9.236 11.070 12.833 [5.086 16.750 20.515
6 10.645 12,592 14.449 16.812 18.548 22.458
7 12.017 14.067 16.013 18475 20.278 24322
8 13.362 15.507 17.535 20.090 21.955 26.124
9 14.684 16.919 19.023 21.666 23.589 27.877
10 15987 18.307 20.483 23.209 25.188 29.588
11 17.275 19.675 21.920 24.725 267157 30.264
12 18.549 21.026 23.337 26217 28.300 32909
13 19.812 22.362 24.736 27.688 20.819 34.528
14 21.064 23.685 26.119 29.141 31.319 36.123
15 22.307 24.996 27.488 30.578 32.801 37.697
16 23.542 26.296 28.845 32.000 34.267 39.252
17 24.769 27.587 30.191 33.409 35718 40.790
18 25.989 28.869 31.526 34.805 37.156 42.312
19 27.204 30.144 32.852 36.191 38.382 43.820
20 28412 31.410 34.170 37.566 399097 45,315
e 20.615 32.671 35479 38.932 41.401 46.797
22 30.813 33924 36.781 40.289 42.796 48.268
23 32.007 35.172 38.076 41.638 44.181 49.728
24 33.196 36415 39.364 42,980 45.559 51.179
25 34.382 37.652 40.646 44314 46.928 52.620
26 35563 38.885 41.923 45642 48.290 54.052
27 36.741 40.113 43.195 46.963 49.645 55.476
28 37916 41.337 44.461 48.278 50.993 56.892
29 39.087 42,557 45.722 49.588 52.336 58.301
30 40.256 43.773 46.979 50.892 53.672 59.703
31 41,422 44985 48.232 52.191 55.003 61.098
32 42.585 46.194 49.480 53.486 56.328 62.487
13 43,745 47.400 50.725 54.776 57.648 63.870
34 44.903 48.602 51.966 56.061 58.964 65.247
35 46,059 49.802 53.203 57.342 60.275 66.619
36 47.212 50.998 54.437 58.6019 61.581 67.985
37 48.363 52.192 55.668 59.893 62.883 69.346
38 49.513 53.384 56.896 81.162 6d.181 70.703
39 50.660 54.572 58.120 62.428 65.476 72.055
40 51.805 55.758 59.342 63.691 66.766 73.402
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Table C.2 (continned)

degrees
of
reedom 0.900 0.950 0975 0.990 0.995 0.999

41 52949 56.942 60.561 64.950 68.053 74,745
42 54.090 58.124 6L.777 66.206 69.336 76.084
43 55230 59.304 62,990 67.459 70.616 77.419
44 56.369 60.481 64.201 68.710 71.893 78.750
435 57.505 61.636 65410 69.957 73.166 80.077
46 38.641 62.830 66.617 71.201 74.437 81.400
47 59.774 64.001 67.821 72.443 75.704 32.720
48 60.907 65.171 69.023 73.683 76.969 84,037
49 62,038 66.339 70.222 74919 78.231 85.351
50 63167 67.505 71.420 76.154 79.490 86.661

L~! (see Appendix A, paragraphs 5.3 and 5.4). The Cholesky factorization of
Tlis

T =TTT
which enables us to express Eq. (C.12) as
Z,=[(X —mT][(X - mT]" (C.13)

The variable (X —m)T is a linear function of X and is therefore MVN
distributed with mean

E[X —m)T] =mT — mT =0,
and covariance matrix
cov[(X — m)T] =T'ET = ™I 'T = T IT T =1

Since Z, is the sum of the squares of the elements of (X —m)T and these
elements are indcpendent standard normal variables Z, is given by an
expression like Eq. (C.10) and it is therefore 7ty distributed.



Appendix D Some Definitions and Properties of

Convex and Concave Functions

Convex Sets and Convex (Concave) Functions

1.1 A set # of points in &" is convex if for any pair of points x**! and x'?
belonging to # and for any real number o between zero and one, x'*? +
(x* — xWa also belongs to #; in geometric terms the line segment joining
two points of the set also belongs to the set. Note that 9" is convex.

1.2 Afunction y = F(x) [x =(x,, ..., x,)] of several variables is strictly
convex (concave) if the following “chord above (below) the curve” property
holds:

Convex F[x™ 4 a(x® — x")] < Fx™) + o[ Fx'®) — Fx''h], (D.1)
Concave F[x" + a(x® — x!"] > F'") + o[ Fx?) — Fx''Y], (D.2)

for every 0 < o < 1 and any pairs of points x*!! # x2,

1.3 If the strict inequality signs are replaced by inequality or equality
signs, we say that F{x) is convex (concave).

1.4 Ttimmediately follows from the definition that changing the sign ofa
{strictly} convex function results in a (strictly) concave function. The converse
is also true.

Since this result enables us to transform any property of convex lunctions
into a parallel property of concave functions, for the rest of this appendix we
shall restrict our attention to convex functions.

1.5 Il Eq.(D.1), or the equivalent definition in paragraph 1.3, holds only
between pairs of points belonging to a convex set #, we say that F(x) is
convex, or strictly convex, in that convex set. Note that since 4 is convex,
XY+ ax® — x")] g o#.
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Differential Properties of Convex Functions

A proof of the following three results can be found in Avriel (1976):

2.1 The Hessian matrix of a continuously twice-differentiable function
F{x) in an open convex set # is positive semidefinite in 3 if and only if F(x)
is convex in 4.

2.2 If the Hessian matrix of a continuously twice differentiable function
F{x) in an open convex set 5 is positive definite in #, F (x) is strictly convex
in . The converse is not true, however, since there are strictly convex
functions whose Hessian is not positive definite (y = x* is strictly concave in
2 but dzy,fdx2|x:0 = Q).

2.3 A differentiable function F(x) is convex in an open convex set # il
and only if

F®) + VRO — x0T < Fe®) (D3)

for any two points x® % x" belonging to the set #.
The same result with a strict inequality sign holds for strictly convex
functions. Note that for functions of one variable, Eq.(D.3) can be rewritten as

o oy e SESED
dF(x X)) — F(x A%=T ()
xS XD D J §>xﬁ'

In other words a differentiable function of one variable is {strictly) convex
In an open interval ## if and only if its first derivative is (strictly) increasing
in 3.

Unimodality of Convex Functions

3.1 A function that is convex in an open convex set .# cannot have a
local minimum in # that is not also global in . This is proven by contradic-
tion. Letx* e # be a local minimum of F(x) and assume that the statement is
false; then there is a point x' e #, different [rom x*, for which FixW) <
F(x*); and because x* is a local minimum belonging to the interior of 2,
there is a point x'! defined as

X = x* 4 g(x! — x¥)

that for some 0 < & < 1 satisfies F(x'?) > F(x*) and x*¥ € .
Since Fix'") < F(x*) < F(x**) with x'V, x® ¢ #, and

XY = x* s(x‘” _ x*)
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Eq. (D.1) (with a < sign) cannot hold for extreme points x* and x'"} when
o =g, and F(x) could not be convex in #.

3.2 A function that is strictly convex in an open convex set 2 has at
most one local minimum x* in #. We prove this by contradiction too.
Assume that x'V e # is another local minimum; then by paragraph 3.1,
F(x'"y = F(x*), and since for a sufficiently small but positive &

FIx™ 4 efx* — xV)] = FixV)

(x* is a local minimum), condition (D.1) cannot be met with x‘* = x* and
¢ = E.

3.3 The gradient of a differentiable strictly convex function F(x), defined
in an open convex set 5, vanishes at most once in 3# and it it does so, that
point x* is the unique local-global maximum of F(x) in 7.

If the gradient vanishes at x*, paragraph 2.3 ensures that x* is a local
minimum, which by paragraph 3.2 is unique and by paragraph 3.1 global.

Other Properties of Convex Functions

41 I F{x) =[Fyx),..., F.(x)]is a set of convex functions defined in
a convex set 47, a linear combination of F{x) with nonnegative coefficients

"

Gkx)= 3, BFix),  Bi=0, (D.4)
i=1
isalso convex in 3. Furthermore, if one of the functions F;(x) with a positive
coefficient §; > 0 is strictly convex, G(x) is strictly convex.

These results are easily verified by entering with G(x) into the definition
of convex and strictly convex functions given in paragraphs 1.2 and 1.3.

42 TY={(Y,...,Y,) is a vector-valued random variable and F(x,y)
is a (strictly) convex function of x for every value of y, G(x) = Ey[F(x,Y)]
is a (strictly) convex function of x.

This is seen by writing

Goy=[ - [ FoxnFeydy,

where Fy(y) represents the mass—density lunction of Y, and entering with
this expression into the definition of (strictly) convex functions given in
paragraphs 1.2 and 1.3,

4.3 If F(x) is a convex [unction of x = (x,, ..., x,), A is an arbitrary
m % i matrix, and y is an m-dimensional row vector, then G(y) = F(yA)
is a convex function of y.

As with paragraphs 4.1 and 4.2, this is proven by entering with G(y) into
the definition of convex function given in paragraph 1.2,
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